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IMPROVEMENTSIN BLOCK-KRYLOV RITZ VECTORSAND THE
BOUNDARY FLEXIBILITY METHOD OF COMPONENTSYNTHESIS

Abstract

by

KELLY SCO'YrCARNEY

A methodof dynamicsubstructuringis presentedwhichutilizes asetof static

Ritz vectorsasa replacementfor normaleigenvectorsin componentmodesynthesis.

This setof Ritz vectorsis generatedin arecurrencerelationship,proposedby Wilson,

which has the form of a block-Krylov subspace.The initial seedto the recurrence

algorithm is based upon the boundary flexibility vectors of the component.

Improvementshavebeenmadein the formulation of the inial seedto the Krylov

sequence,throughtheuseof block-filtering. A methodto shift the Krylov sequence

to createRitz vectorsthat will representthe dynamicbehaviorof thecomponentat

target frequencies,the target frequencybeing determinedby the applied forcing

functions,hasbeendeveloped. A methodto terminatethe Krylov sequencehasalso

beendeveloped. Various orthonormalizationschemeshavebeendevelopedand

evaluated,including theCholesky/QRmethod.Severalauxiliary theoremsandproofs

ii



which illustrate issuesin componentmodesynthesisandlossof orthogonalityin the

Krylov sequencehavealsobeenpresented.

The resulting methodologyis applicable to both fixed and free-interface

boundarycomponents,andresultsin a generalcomponentmodelappropriatefor any

type of dynamic analysis. The accuracyis found to be comparableto that of

componentsynthesisbaseduponnormalmodes,usingfewergeneralizedcoordinates.

In addition, the block-Krylov recurrencealgorithm is a seriesof staticsolutionsand

sorequiressignificantlylesscomputationthansolvingthenormaleigenspaceproblem.

The requirementfor less vectorsto form the component,coupled with the lower

computationalexpenseof calculatingtheseRitz vectors,combineto createamethod

more efficient than traditionalcomponentmodesynthesis.

°°°
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Chapter 1

Introduction

Component mode synthesis is a methodology for analyzing large structures by

separating them into smaller components, reduced representations of which can then

be recombined to analyze the entire system. This methodology has become well

established and widely used in structural dynamic analysis. The advantages of

component mode synthesis include lower computation costs associated with smaller

components, and the flexibility of data management gained by working with the

discrete components.

The typical component mode synthesis algorithm is briefly described 8. A large

structure is broken into components, with each component having a set of boundary,

or interface, points. At these interface points, fixed or free boundary conditions are

assumed, and a corresponding set of component normal mode shapes, or eigenvectors,

is determined. The eigenvectors are augmented by a set of modes which are

associated with the component's boundary flexibility. Depending on whether a fixed

or free interface is selected, these modes are the constraint modes or the attachment

modes, respectively. The combined set of component normal modes and boundary

modes are used to represent the component in subsequent system analysis by using

the following transformation process. The combined set of modes form a coordinate
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transformationmatrix which transformsthe physical coordinatesof the structural

model into a combinationof modal coordinatesand boundarycoordinates. The

boundarycoordinatesareretainedin thephysicalspace,sotheycanbeusedto couple

the componentsfor subsequentsystemanalysis.

A component's size, although smaller than that of the complete structural

model, can still be large enough to be computationally expensive. The rapid reduction

in cost per calculation in today's digital computers has not necessarily led to a

reduction in total computation cost. Instead, engineers have exploited the increased

computational resources by creating larger structural and component models. The

larger models have allowed for more structural details to be represented, as well as

more refined data recovery, but they may be expensive to formulate and analyze. In

order to reduce the computational cost associated with large component models, it is

desirable to develop more efficient methods of formulation. Since the solution of the

normal eigensystem problem requires the largest computational effort in component

formulation, it is logical to develop alternate methods which circumvent the

eigensystem solution entirely.

A method, which does circumvent the eigensystem solution, has been defined

in literature and is briefly described H°3°. The boundary flexibility modes, specifically

either the same constraint modes or attachment modes that were mentioned previously,

are multiplied by the component mass matrix to create a force matrix. Static analysis

is then performed, using this force matrix and the component stiffness matrix, to
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obtaina matrix,or block, of vector displacements. A recurrence relationship of matrix

multiplications, which have been shown to be a Krylov sequence _°19, then defines a

series of matrices, or blocks, of vector displacements. The calculated vectors are

orthogonalized, using normalized Gram-Schmidt orthogonalization _8. These vectors,

which can also be thought of as static modes or static Ritz vectors, replace the normal

modes in the component formulation methodology. Because the static Ritz vectors

are calculated in blocks and are based on a Krylov sequence, the subspace defined by

these vectors is called a block-Krylov subspace.

The work described in this dissertation originated by identifying areas of

potential improvement in the implementation of the existing static Ritz vector, block-

Krylov, boundary flexibility methodology. Specific potential improvements in the

form of equations and software were created, implemented and assessed. If useful,

the improvement was adopted. These adopted improvements are briefly discussed

in the following paragraphs.

Mathematical theory predicts that the vectors obtained from the Krylov

sequence, after orthogonalization with the previous two vectors in the sequence, are

independent. However, in practical applications these vectors usually converge, and

sometimes quickly, to a nearly dependent state. Using totally dependent or nearly

dependent vectors, the Gram-Schmidt orthogonalization algorithm fails. As a result,

a set of vectors sufficient to define the dynamics of the component may not be

obtainable. A solution to this problem has been available, consisting of repeated
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Gram-Schmidtorthogonalizationwith all previousvectors,wheneverthat procedure

initially fails. This simplesolution is usually successful.However,successivere-

orthogonalizationcanbecomputationallyexpensiveandthereis noguaranteethat the

resultingvectorswill haveanyphysicalsignificance,or thatthis processwill not also

eventually fail22. Several alternate re-orthogonalizationprocedureshave been

investigated,evaluated,anddiscussedin this work.

In addition to the investigation of Gram-Schmidt re-orthogonalization

procedures,an alternative procedure for orthogonalizationin the block-Krylov

sequencehas been presented. Rather than the Gram-Schmidtvector by vector

numericalscalingapproach,a matrix transformationwhichorthogonalizesthevectors

simultaneouslycan be created,without calculating eigenvectors. This matrix

transformationutilizesthetransposeof theCholeskyfactorof amatrix productof the

original dependentset of vectors. This processhasbeenshownto be moreefficient

than the Gram-Schmidtorthogonalizationprocedurein this application. Cholesky

orthogonalizationhas been integrated into the boundary flexibility method of

componentsynthesisusinggeneralizedstatic Ritz vectors.

Another enhancementin the boundaryflexibility methodologywas possible

becauseof the initiation of the Krylov sequencewith theboundaryflexibility modes.

Recall thattheboundaryflexibility modesaremultipliedby themassmatrix to create

a forcematrix. Thesizeof this forcematrix is thesameasthe sizeof thecomponent

interface, which subsequentlydeterminesthe block size in the Krylov sequence.
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Whenworking with finite elementmodelswhich havesimple interfacestheresulting

force matrix and solutionshavephysical significanceand theblocks areconvenient

to process. However, in typical aerospacestructureswhere a more complicated

interfaceand a large numberof interfacenodesexists,the Krylov block sizewill be

very large. This can leadto severalcomplicationsin convergenceandtruncation.

The problemof largeblock sizehasbeensolvedin this work by discardingnearly

dependentvectors from theblock, previousto orthogonalization.Vectorswhich are

nearlydependentare,geometrically,nearly identicalto eachother. As a result, no

particularly useful informationis being lost whenthey are removedfrom the block.

This reductionalso reducesthe sizeof subsequentblocks. This methodhasbeen

identified in this work asblock filtering.

A problemwhich all staticRitz vector,Krylov sequencesolutionshaveis the

lack of a soundmathematicalbasisfor judging whento terminatethesequence.The

sequenceshouldbe terminatedwhentheresultingsetof Ritz vectorsis sufficient for

dynamic representationof the component. When using normal eigenvectorsto

representa component, modal truncation,basedupon an eigenvaluecutoff, is the

mostpopularbasisfor judging if thedynamicrepresentationis sufficient. StaticRitz

vectorsdo not haveaneigenvaluewith which to associatea truncationlimit and so

an alternatemethod of the termination of the Krylov sequence was required and

developed. This method is an heuristic methodology based upon the density of the
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modal spacein the componentand the demonstratedobservationthat the most

dynamically significant static Ritz aregeneratedearly in the Krylov sequence.

While investigatingtheLanczoseigenvalueextractionmethod,donesobecause

of it's useof the Krylov sequenceandit's resultingsimilarity with staticRitz vectors,

the tool of inverse operatorswas recognized. The use of inverse operators is

commonly called sequenceshifting. By shifting the sequence,an eigenvalue

extraction routinecan locatemissingeigenvalueswithin a specific frequencyrange.

The usemadeof shifting in this work differs from that of eigenvalueextraction in

that, insteadof targetingrangesof missingeigenvalues,the shift is targetedto the

frequency of the applied forcing function. In this manner, vectors which can

contribute to an accuratedynamicresponseprediction aregenerated. The use of

shifting in this mannerhasbeenidentified in this work astargetedshifting.

Of thevariousenhancementsdiscussedin theprecedingparagraphs,only block

filtering is specificallytied to componentmodesynthesisandtheboundaryflexibility

method. All the other improvements,suchastargetedshifting and modal density

seriestruncation,canbe usedin the generalstaticRitz vectormethodology. Even

so,in this work theseimprovementshaveprimarily beenimplementedandevaluated

in the contextof theboundaryflexibility method.Severalgeneralmathproofs,which

arealso not specificto theboundaryflexibility method,havealso beenderivedand

presented.



Chapter 2

Literature Review

2.1) Introduction:

Wilson, Yuan, and Dickens 29originally proposed the use of Ritz vectors, based

upon external loading, for structural dynamic analysis. This formulation reduced an

entire structure, not a component. The algorithm begins with a set of externally

applied loads. The displacements from the static solution to the applied loads become

the initial Ritz vector. That vector is then multiplied by the mass matrix to become

the next force vector. This sequence is repeated to form a recurrence relationship and

a series of special Ritz vectors, which are referred to in this work as static Ritz

vectors. The proposed recurrence relationship is used in the papers discussed below

and throughout this work.

Wilson's methodology was applied, using MSC/NASTRAN, to several large

finite element models by Arnold, Citerley, Chargin, and Galant 3. It was found that

Wilson's methodology was computationally more efficient than the standard normal

modes procedure. A recent application using a simple model of the space station was

presented by Escobedo-Torres and Ricles _'. This work compared the predicted

transient response of the space station due to a docking force using load dependent

Ritz vectors with predictions using eigenvectors.

7
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Nour-Omid andClough_9investigatedWilson, et al'smethodologyand found

that the proposedrecurrencerelationshipactually generateda Krylov sequence.A

Krylov subspaceof orderj is a vector space defined by

[ dp , A d_ , A 2d_ , . . . , A J- I_ ] (2.1)

where 0 is a column vector and A is a square, symmetric matrix. If A is n x n,

nonsingular, and ifj = n, the Krylov vectors span the n dimensional space m, and an

exact solution can be produced. In structural dynamics, the Krylov subspace can be

defined by the following Krylov sequence,

[r,K -1 M r,(K -1 M)2r, ...,(K -1 M) j-1 r] (2.2)

where K is the stiffness matrix, M is the mass matrix, and r is a starting vector (or in

block-Krylov, a set of vectors). The matrix product K'IM is not symmetric and its use

in the Krylov sequence yields subtle theoretical and practical differences which will

be discussed below. The Krylov sequence is also the basis of the Lanczos eigenvalue

extraction algorithm, and Nour-Omid and Clough refer to Wilson's static Ritz vectors

as Lanczos coordinates. The Lanczos eigenvalue extraction algorithm generates

Krylov vectors, which are used to transform the system into a tridiagonal form _5"=.

To extract the eigenvalues, this tridiagonal matrix is diagonalized using a QR, or

related, algorithm. Nour-Omid and Clough utilize the tridiagonal system matrices

directly to solve the dynamic response problem.
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Nour-Omid and Clough extendedtheir work to a more generaldynamic

loadingrepresentedby alinearcombinationof loadvectors2°,suchastime dependent

loading. The result was a structuraldynamicsapplicationof the block-Krylov, or

block-Lanczosmethodfor the dynamicanalysisof structures.A block is definedas

the combinationof a setof vectors,or modes,into matrices.They alsopresentedthe

requirementof usingtheGram-Schmidtprocedureto orthogonalizethevectorswithin

the Krylov block.

Theuseof staticRitz vectorswasshownto beapplicableto componentmode

synthesisby Wilson andBayo aS. The static Ritz vectors calculated were based, once

again, upon an external load. Only a formulation for components with fixed interface

boundary conditions was presented. This work was also implemented and applied by

L6ger _6to an example small beam.

A similar development of static Ritz vectors in component mode synthesis was

presented by Allen 2. This paper provided the basis for the application work performed

by Brunty 5. The transient response of the Space Shuttle vehicle, during liftoff, was

calculated using load-dependent static Ritz vectors and compared to the response

predicted using eigenvectors in the component mode synthesis. Similar answers were

obtained using less computer time.

Abdallah and Huckelbridge 1, and independently, Craig and Hale _°,

demonstrated a generalized methodology applicable to components with fixed or free

interfaces, with or without rigid body modes, and with or without applied loading.
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Componentshaving no appliedextemal loading were formed using the boundary

flexibility matrix, multiplied by the massmatrix, to form a forcematrix. This force

matrix producesa setof staticRitz vectors. (CraigandHalerefer to thesevectorsas

Krylov vectors). The boundaryflexibility matrix is definedaseither the constraint

modes or the attachmentmodes,dependingon whether fixed or free interface

conditionsareselected.The methodologycontainedin thesetwo papersis reviewed

in thenext threepartsof this section. AbdallahandHuckelbridgealsoquantifiedthe

advantages,in computationaleffort, that generalizedstatic Ritz vectorshave over

normal eigenvectors. Carney, Abdallah, and Huckelbridge implemented this

methodologyin MSC/NASTRAN 6.

Yiu and Landess 3° also developed a similar methodology for forming a

component which does not have an external applied load. However, their formulation

is applicable to fixed interface components only. A criteria for concluding the

recurrence sequence, based upon the rigid body mass and flexibility represented by

the calculated static Ritz vectors, was proposed.

Some applications of static Ritz (referred to in that article as Krylov) vectors,

including unsymmetric, damped structural dynamics systems may be found in the

work of Craig, Su, and Kim _. The focus of this effort is on the control of the flexible

structure represented by the Krylov vectors.

Both the Lanczos eigenvalue extraction algorithm and static Ritz vectors

calculated using the boundary flexibility method are based upon the Krylov recurrence
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sequence. As a result, someof the information and experienceavailable in the

publishedliteratureconcerningLanczoseigenvalueextractionhas relevanceto static

Ritz vectors. Amongst the wide amount of available literature, the most complete and

up to date source of information concerning the Krylov sequence and Lanczos

eigenvalue extraction is Parlett's book, The Symmetric Eigenvalue Problem 22. This

book also includes information on other eigenvalue extraction algorithms, as well as

discussions on general linear algebra tools which are particularly useful in this type

of analysis.

In addition, two other excellent sources of information concerning the Lanczos

eigenvalue extraction algorithm are the reports, A Shifted Block Lanczos Algorithm

for Solving Sparse Symmetric Generalized Eigenproblems _3, by Grimes, Lewis and

Simon of Boeing Computer Services, and the MSC/NASTRAN Handbook for

Numerical Methods 3_. These reports have a useful emphasis on the practical

implementation of the Lanczos algorithm. The same implementation of the shifted

block-Lanczos algorithm is presented in both of these documents. The first

commercial implementation of Lanczos eigenvalue extraction was accomplished by

Boeing Computer Services. MSC subsequently obtained this code from Boeing and

implemented it in MSC/NASTRAN, and have since made a number of modifications

and improvements to the algorithm.
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2.2) Review of Boundary_ Flexibility Component Mode Synthesis:

Almost all of the literature published on the variously titled, Krylov, Lanczos,

or static Ritz, vectors focuses on the use of these vectors at the system level. These

works deal with either Lanczos eigenvalue extraction, control dynamics, or external

load derived Ritz vectors. The emphasis of this dissertation is the use of static Ritz

vectors in component mode synthesis. As a result, a detailed review of the small

amount of literature describing the static Ritz vector boundary flexibility method of

component synthesis, which is the starting point of this work, is warranted.

2.2.1) Fixed Interface Methodology:

First, as is standard in component mode synthesis methods, the finite element

component mass, m, and stiffness, k, matrices are partitioned into intemal and external

degrees of freedom, denoted by subscripts i and c, respectively.

m cc

17l=

ill ic l"ll ii

k = [ke kii

The constraint modes are defined by

_Pi¢ = -ku -1 kic

(2.3)

(2.4)

(2.5)

which is the same definition used in standard component mode synthesis.
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For Wilson's method29,a setof externallyappliedloadsis requiredto obtain

the initial setof Ritz vectors. For the boundaryflexibility method,this setof loads

is createdby multiplying the constraintmodesby the massmatrix. (Craigmalso

includedthe off-diagonalmassmatrix in his formulation.) Sincethe massmatrix is

usedto createtheloads,theycanbeconsideredinertia loads. Thissetof inertia loads

arethenusedto generatethe initial set,or block,of Ritz vectorsusingthe following

ql = k ii-1 ( m ii _ ic+m ic) (2.6)

where the superscript ** indicates that the vectors in the matrix have not been

normalized. The first block of vectors is normalized using the following equation,

where the subscript r signifies that the block is normalized vector by vector. There

are c vectors within each matrix, or block.

* *

ql, = r = 1,2,...,c (2.7)

_/(ql,** r raiiql ..)

Note that the denominator of the right hand side of the equation is merely the inner

product norm, IIqlira, calculated with respect to the mass matrix.

The subsequent sets of static Ritz vectors in the Krylov sequence are generated

q; = kii-1 m_qj_i (2.8)

using the recurrence relationship which was defined in equation (2.2) 19'29,
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where the superscript * signifies that the vectors have not been orthogonalized or

normalized. The additional sets of vectors are orthogonalized, with respect to the

mass matrix, with all previous vectors. The process used to perform this

orthogonalization is a normalized Gram-Schmidt procedure.

qj = qj -qld-lC (2.9)

where
r * (2.10)

C = ql,j-1 muqy

and q,,,j-i is the concatenation of the previous sets of Ritz vectors,

ql,j-1 = [ql,q2,'",qj-a] (2.11)

where all vectors have been normalized as follows.

_r _

qL = r = 1,2,...,c (2.12)

_(qL** r muqj .. )

The complete set of calculated Ritz vectors is included in the transformation

matrix as Q_. (The resulting transformation matrix has the same form as that of

"Craig-Bampton" component mode synthesis 9, with the Ritz vectors replacing the

normal modes.)

(2.13)



15

The physicalmassandstiffnessmatricesaretransformedinto the componentmodal

matrices
I_= _rm _ (2.14)

r = TrkT (2.15)

The resulting mass submatrices are

where

_ cc = _ ic T ( m ii tYPic+ m ic ) + m ci tYPic+ m cc

_lc i,t T T t_= _t =Ol (m_ _ +m_)

P'u = Iu = O r muOl

The resulting stiffness submatrices are

K _ Kcc Kcll

Klc KIIJ

where

g cc = k ci dP ic + k cc

glc = KcIT = 0

gtt = QT kiiOl

(2.16)

(2.17)

(2.18)

(2.19)
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The useof constraintmodesin thetransformationmatrix leadsto thenull off-diagonal

partitionsof thecomponentstiffnessmatrix,just asin theapproachbaseduponnormal

modes.

2.2.2) Free Interface Methodology for Components with No Rigid Body Modes:

When allowing the interface points of a component to be free to deflect while

forming the component, a somewhat different basis for the initial vector of the Krylov

sequence is required. The attachment modes, rather than the constraint modes are

utilized in initial block definition. By definition, the attachment modes are the

columns of the flexibility matrix which correspond to the interface degrees of freedom.

g = k-1 (2.20)

(2.21)

The initial block of vectors in the free interface formulation is defined as

ql"* = k-x mga (2.22)

and is normalized as follows.

fir _

ql, = r = 1,2,...,c (2.23)

((ql,'* r m ql,**)
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Note that the unpartitioned physical mass and stiffness matrices of the component are

used in the free interface formulation. The recurrence algorithm then proceeds in the

same manner as in the fixed interface methodology.

qj* = k -1 m qj-1 (2.24)

qj** = qj* - qlj-1 c (2.25)

c = qlj_lrm qj* (2.26)

qjr _

qy,-- r = 1,2,...,c (2.27)
((qj,.. r m qj,")

Formation of a static Ritz vector component then follows the normal

component mode synthesis techniques which were presented by MacNea117 and

Rubin 24. To combine the "Rubin-MacNeal" method with the presented method, the

normal eigenvectors are simply replaced with the static Ritz vectors, as in the fixed

interface methodology. The free interface methodology uses residual flexibility terms,

which fully define the stiffness missing from the modal space due to excluded modes.

The flexibility contained in the calculated Ritz vectors is given by tbe following

equation.

g_ = Qt(Qtrk Qt) -I Qt r (2.28)

The unrepresented flexibility, or residua/flexibility, is defined as

gd = g - gk (2.29)
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Theresidualflexibility matrix is thenpartitionedin thesamemannerastheflexibility

matrix was in equation(2.21),when the attachmentmodeswere createdfor initial

vectorcalculation. The result is the residualattachmentmodes.

gad =
gCCd 1

gicd J

(2.30)

When the residual attachment modes, g,a, are added to the Ritz vectors, Qt, the

complete flexibility of the component is represented.

The residual attachment modes and the Ritz vectors are used to form the

component transformation matrix. This matrix transforms the physical subspace, u,

to the modal subspace, p, and is defined by the following equation.

Ui gic a Qil

(2.31)

In order to provide physical interface degrees of freedom, for use in component

coupling, Pc in the above equation is back-transformed to eliminate it from the right-

hand side of the equation. This results in the following transformation matrix,

[uc]i,cc01[uc1
Ui gic* Oil* Pl

(2.32)
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g * -1ic = gicdgcc d

g -1Oil* = Oil- gic d ccd Ocl
(2.33)

The transformation of the component mass and stiffness matrices then proceeds in a

similar manner as shown in equations (2.14) through (2.19), with the following

differences. The Qi7 matrix partition replaces the Qt matrix partition. The g," matrix

partition replaces the _ic matrix partition. In the fixed-interface methodology, the

definition of the constraint modes, _ic, leads to terms in the component stiffness

matrix which cancel out. In the free-interface methodology, the definition of the

transformation submatrices has changed and so this cancellation does not occur.

Therefore, the corresponding equations in (2.19) are replaced by the following

equations, respectively.

*T * *+Kcc=g_c (kugic +kic)+kagic kcc

,:jc= ,%r Oil *= (kig _ +kit) (2.34)

2.2.3) Free Interface Methodology for Components with Rigid Body Modes:

When a component has rigid body modes, the associated stiffness matrix is

singular. The inverse of the stiffness matrix, the flexibility matrix, cannot be directly

obtained, and therefore the attachment modes cannot be directly obtained. To

circumvent this problem, Rubin 24 presented the following method for obtaining the

residual elastic attachment modes of a component with rigid body modes.
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First, thestiffnessmatrix isconstrainedfrom rigid bodymotionby partitioning

out r degrees of freedom, where r is the number of rigid body modes.

kw_

k = kr_ krr

(2.35)

The remaining partition is then inverted.

gWW ---- kww -1
(2.36)

This flexibility matrix is then expanded back to n (w + r) size.

g¢
(2.37)

A square projection matrix is defined by

A = Inn - m _OrdPrT (2.38)

where _r is the rigid body modes matrix. The elastic flexibility matrix, g,, with rigid

body motion removed, is shown in reference [24] to be

ge = Argo A (2.39)

Now the analysis proceeds in a similar fashion to the previously discussed

methodology of the free interface component with no rigid body motion. The major
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differencebetweenthetwo approachesis that theelasticflexibility matrix is usedin

placeof the generalflexibility matrix. The inertiarelief attachmentmodesare

gac

(2.40)

The initial block of vectors is calculated using the inertia relief attachment modes and

the elastic flexibility matrix.

qa** = ge ra ga, (2.41)

The subsequent static Ritz vectors are calculated, orthogonalized, and

normalized as shown in equations (2.24) through (2.27). The residual elastic

flexibility terms are also calculated as shown in the free interface with no rigid body

modes discussion, equations (2.28) through (2.30). Creation of the transformation

matrix, equations (2.31) through (2.34), is also similar to when no rigid body modes

are present. The one exception is that the rigid body modes must be included in the

transformation matrix. Therefore, equation (2.31) is replaced by

Ui gic d Qil _irJ
P_

(2.42)

Formation of the final transformation matrix, and subsequently the component mass

and stiffness matrices, is then performed as described in the previous section.
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2.3) Relationship to Lanczos Eigenvalue Extraction:

In addition to being the result of the fundamental recurrence equation when

calculating static Ritz vectors, a Krylov sequence is also the result of the fundamental

recurrence relation used in the Lanczos eigenvalue extraction algorithm 15"22. The

Lanczos eigenvalue extraction algorithm uses a Krylov sequence to generate terms

which can be used to transform the given system into a tridiagonal form. This

tridiagonal matrix is then diagonalized using a QR, or related, eigenvalue extraction

algorithm and the resulting diagonal terms are the eigenvalues of the original system.

A detailed presentation of the Lanczos algorithm is beyond the scope of this work.

Since Krylov vectors are the foundation of the Lanczos eigenvalue extraction

algorithm, some of the existing literature which investigates orthogonalization, shifting,

and practical implementation of the Lanczos algorithm is applicable to static Ritz

vectors, since they are also derived from the Krylov sequence.

There are also significant differences between the Lanczos eigenvalue

extraction algorithm 15'22and the use of static Ritz vectors directly. These differences

are summarized as follows. In the selection of the initial seed to start the Krylov

sequence, Lanczos starts with a random vector. This is done to prevent the Krylov

sequence from converging to a particular class of eigenvectors and skipping other

eigenvectors entirely. Since another transformation will take place converting the

tridiagonal matrix into the system eigenvalues, the vectors from the sequence need not

have a particular physical significance. Wilson's methodology initiates the sequence
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with a matrix which hasphysical significance,i.e., a load vector. In the boundary

flexibility methodthatloadvector is theconstraintor attachmentmodesmultipliedby

the componentmassmatrix, forming an inertia load vector block. That leadsthe

vectorswhich result from subsequentiterationsof the sequenceto tend to also have

physicalsignificance.ThisdifferencealterstheKrylov sequencefrom beinga purely

mathematicaltool for eigenvalueextraction,into a mechanicallybasedapplicationin

structuraldynamics.

Thesedifferencesbetweenthetwo methodologiesstemfrom thediffering goals

of the two algorithms. As discussedabove,the Lanczosalgorithmsearchesfor the

eigensystemby first transformingthe original systemmatricesinto tridiagonalform,

and then diagonalizing that tridiagonal form to obtain the eigenvalues. Some

applicationsof Wilson's methodologymake useof the tridiagonal form, but the

orthonormalizedvectorsobtainedfrom thesequenceareinsteadusedto transformand

reducethe original system directly. The eigenvaluesand eigenvectorsare not

obtained,andboth transformedmassandstiffnessmatricesdo notassumea diagonal

form. In all componentmodesynthesisthereducedmatricesarenotdiagonalanyway,

due to the coupling massand stiffness partitions of the final reducedmatrices

(equations2.17and 2.34). Therefore,the non-diagonalform obtainedfrom the use

of staticritz vectorsis not a disadvantagewhenusedin componentmodesynthesis.

In addition, thevector spacein which atransformedsystemis tridiagonalis not the
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sameasin the componentmodesynthesisalgorithm,and,asaresult,is not usefulas

a final goal.

Vectorblocksarealsoutilized in thepracticalimplementationof the Lanczos

eigenvalue extraction algorithms 13'22"31.The original Lanczos algorithm had difficulty

in determining a complete set of multiple eigenvalues. Using vector blocks in the

Krylov sequence allows the algorithm to determine multiple roots, up to the dimension

of the block. When blocks are used in the Krylov sequence, the tridiagonal form of

the transformed system also assumes a blocked format. The bandwidth of the

tridiagonal form is then determined by the dimension of the block. The block format

complicates orthogonalization and sequence truncation schemes. The block format

is a natural feature in the boundary flexibility method because of the multidimensional

inertia load vector block.

2.4) Orthogonalization:

The most computationally expensive aspect of the formulation of static Ritz

vectors is the process of orthogonalization (equations (2.9) through (2.12)). As a

result, efficient orthogonalization is critical in determining this method's efficiency

when compared to the use of eigenvectors. Since Ritz vectors are not inherently

independent, for them to be used in a similarity transformation, they must be

orthogonalized. Obviously if this process is more computationally expensive than the

calculation of eigenvectors, then it's usefulness is limited.
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2.4.1) Loss of Orthogonality:

It has been shown in several works 15"19'22,that if a Ritz vector obtained from

the Krylov sequence is orthogonalized, using Gram-Schmidt, with the two previous

Krylov vectors, it is theoretically orthogonal to all previously generated vectors. The

orthonormalizing coefficients are assembled into a tridiagonal matrix. The assembled

tridiagonal matrix is also the result of the Krylov coordinate transformation on the

original system matrix (QrA Q). In other words, use of the Krylov sequence and the

properties of orthogonality, allow the system to also assume a tridiagonal form.

Unfortunately, in practice the theoretical orthogonality that each new Krylov vector

has with all vectors, after orthogonalization with the previous two, is usually lost due

to either even minimal computational round-off error, or other factors which will be

discussed in chapter 3. A mathematically rigorous explanation of this phenomena is

given in references [21],[22] and [26]. As a result, additional orthogonalization and

sometimes re-orthogonalization is required in order to perform a correct transformation

and to maintain the tridiagonal form.

A brief clarification of terms found in the existing literature and used in this

work follows. When Gram-Schmidt procedures are required, they are sometimes

referred to as orthogonalization and sometimes as re-orthogonalization, varying with

author. In this work, orthogonalization refers to the initial Gram-Schmidt process,

even if performed with all previous vectors. Re-orthogonalization refers to any

additional orthogonalization steps following the initial orthogonalization.
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The initial solutionto the lossof orthogonality,which occursin the Krylov

sequence,wasto simplyexplicitly orthogonalizewith all previousvectors,ratherthan

just the previous two. This orthogonalizationschemeis computationallymore

expensivethan orthogonalizingwith the previous two vectors, especiallyas the

numberof previouslydeterminedvectorsbecomeslarge. Thecomputationalexpense

of orthogonalizationiswhatlimited Lanczoseigenvalueextractionusefor manyyears.

Many enhancementsto the basic Lanczoseigenvalueextraction algorithm have

appearedin the literaturethrough the years,someof which were directedtoward

insuring orthogonality. PaigezLestablishedatheorem,usingmatrix normsandterms

from thetridiagonalmatrix,which yieldsa numericalcriterionfor determiningwhen

re-orthogonalizationis required. The orthogonalityof the obtainedvectors is not

explicitly calculated.Whentherequirementfor orthogonalizationdoesarise,thenew

vector would be orthogonalizedwith respectto all previousvectors. Parlett and

Scott23alsousea numericalcriterion,derivedusingmatrixnormsandtermsfrom the

tridiagonalmatrix,to determinewhenre-orthogonalizationis required.Theyproposed

thesimplemodificationof orthogonalizing,usingmodifiedGram-Schmidt4,with only

thosepreviousvectorswith whichthenewvectoris notorthogonal.Simon26clarified

issues dealing with the loss of orthogonality, developed an additional re-

orthogonaiization scheme, and investigated the complete orthogonalization issue in

depth.
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2.4.20rthonormalization:

In general, the existing literature describes the Lanczos eigenvalue algorithm

as extracting the eigenvalues of a single symmetric matrix, A.

A x = ), x (2.43)

The vectors obtained from the Krylov sequence are orthonormalized using the

Euclidean vector norm, which is defined as IIx 112= ( Ix, 12 + Ix 212 + ... + Ixp 12)''2.

Because of the spectral theorem 22, the eigenvectors are also orthonormal with respect

to the A matrix. However, as discussed above, in structural dynamics, the

eigenproblem which is being solved is a system with both mass and stiffness matrices.

Kx = _,Mx (2.44)

In the MSC/NASTRAN application of the Lanczos eigenvalue extraction algorithm,

the mass and stiffness matrices are used directly in the Krylov sequence and the

Krylov vectors are orthonormalized with respect to the mass matrix 3_.

In the use of static Ritz vectors for structural dynamics applications, as

described in detail in section 2.2, the mass and stiffness are used in the Krylov

sequence and the vectors are orthonormalized with respect to the mass matrix. There

is one exception to the use of the mass matrix. In the work of Su and Craig 27, the

static Ritz (referred to as Krylov) vectors are orthonormalized with respect to the

stiffness matrix. The result of orthonormalizing with respect to the mass matrix will
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be that the modalpartitionof the reducedsystemmassmatrix is the identity matrix.

Onecanorthonormalizewith respectto themassmatrix,thestiffnessmatrix,or using

the Euclidean vector norm, but not all three, with a single Gram-Schmidt

orthogonalizationprocedure. Orthonormalizingwith respectto mass(or stiffness)

allows someflexibility in dealingwith thereducedmassmatrix in someapplications

and is requiredto generatethetridiagonal form whenusingthe Krylov sequenceof

equation (2.2). This is a direct result of the matrix product, K _M, not being

symmetric. As previously discussed, in component mode synthesis the resulting

transformed mass and stiffness matrices are, by definition, not diagonal, and exist in

a different space than that of the tridiagonal form. Therefore, the matrix form of the

transformed component matrices is not an important issue, and it is not necessary to

maintain the ability to generate the tridiagonal form.

2.4.3) Cholesky/QR Decomposition:

Parlett 22 presents the following discussion, relating to orthogonalization. Any

non-null rectangular m by n matrix B can be written as B = QR with m by r Q

satisfying QrQ = I_, and r by n R upper triangular with non-negative diagonal

elements. The QR factorization is the matrix formulation of the Gram-Schmidt

process for orthonormalizing the columns of B. When B has full rank, then R is the

upper Cholesky factor of BrB since

R rR =R rOtOR =g TB (2.45)



29

Useof theupperCholeskyfactorof a matrix for orthogonalization will be presented

in section 3.3.5.

2.5) Shifting:

A technique defined by Scott 25 shows how an inverse operator, either applied

explicitly while using subspace iteration or applied implicitly by while using the

Lanczos algorithm, can direct a solution to particular frequency range. The use of the

inverse operator in the Lanczos eigenvalue extraction algorithm is commonly called

shifting. Shifting has been implemented with success in the commercially available

Lanczos eigenvalue extraction routine _3'31. The inverse operator is applied to the

Krylov sequence within the Lanczos algorithm, and therefore can be applicable to any

Krylov sequence based solution.

In the Scott paper, the problem of computing some eigenpairs of the

generalized eigenvalue problem is considered,

( A- kM) x = 0 (2.46)

with X being the eigenvalues and x the eigenvectors of the pencil (A,M).

is created using the operator

A system

(A -oM)-IM

that has the same eigenvectors as (2.46). The shifted system eigenvalues are

transformed to 1/(_. - (_). This means that the eigenvalue nearest G becomes the
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dominanteigenvalueandthesequencewill convergeto thecorrespondingeigenvector.

In thecommerciallyavailableLanczosroutinesthealgorithmis appliedto the shifted

and invertedeigenvalueproblemof the following equation

M(A - oM)-lMx = 1-----_Mx (2.47)

The use of the shifted eigenvalue form allows the for good approximations to

eigenvalues within specific ranges, even if they are clustered. The cost for having the

advantage of shifting is the factorization of (,4 - cM) _.

2.6) Spectrum Slicing:

Parlett 22 presents the following theorem. When the triangular factorization of

(A - crM) is calculated, if A is symmetric then

(A-oM) =LDL r (2.48)

where D is diagonal and M is positive definite. Then

v (A- oI) =v (A- oM)=v(D) (2.49)

where v is number of negative eigenvalues and A = diag (_,t ,kz ..... k, ). The

number of negative elements of D equals the number of eigenvalues of the pencil

(A,M) which are less than c. As a result, whenever a shift is undertaken the number

of eigenvalues below the shift frequency is determined.
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2.7) Krylov Sequence Termination Techniques:

A large uncertainty in the use of static Ritz vectors and the boundary flexibility

method is the lack of a criteria for terminating the Krylov sequence. When

eigenvectors are used to form a component, typically a frequency range is defined and

all eigenvectors with eigenvalues within that given range are determined. That option

does not exist in the use of static Ritz vectors. A number of error criterions have been

proposed which truncate the sequence when a somewhat arbitrary variable reaches a

arbitrary value.

Wilson, et. al. 29, used a definition of the modal participation factor to define

an error term. This factor is equivalent to the dependence coefficient in a Gram-

Schmidt orthogonalization procedure. The error term is the linearly independent

portion of the force vector, with respect to the Ritz vectors. The linearly independent

portion of the force vector should be zero if the complete static solution is desired.

No account is made for the dynamic response of the system in the error term. A

similar error term was defined by L6ger _6.

Nour-Omid and Clough also used a modal participation factor as a sequence

truncation criterion _9'-'°. However, they did not define or use an error term based upon

the desired dependence of the force vector. They proposed a simple cut off when the

mode participation factor (or dependence coefficient) reached an arbitrary numerical

value. No account is made for the dynamic response of the system.
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Su and Craig 27 stated that a modal participation factor, such as used by Nour-

Omid and Cough, was not valid for a non-diagonal representations, which are the

result of the representations not being based upon normal modes. Therefore, they

proposed that the norm of the off-diagonal submatrices in the transformed mass and

stiffness matrices should be used as sequence truncation criterion. Again, the

sequence would be terminated when the norm reached an arbitrary numerical value.

Yiu and Landess 3° proposed two similar sequence truncation criteria. The first

used a flexibility convergence criteria, similar to the error term proposed by Wilson,

et. al. A mass convergence criteria was also proposed. It was based upon the amount

of the rigid body mass, rather than the force vector, which would be represented by

Ritz vectors. The percentage of rigid body mass represented by Ritz vectors is

commonly referred to as effective mass 14. When the percentage of rigid body mass

represented reaches an arbitrary numerical value the sequence is terminated.



Chapter 3

Theoretical Development

3.1) Introduction:

This short chapter presents two theorems which pertain to the use of static Ritz

vectors in the boundary flexibility method of component mode synthesis. These

theorems concern whether or not static Ritz vectors can be used to represent a

component in a mathematically rigorous fashion. Proofs are presented which

demonstrate the fact that static Ritz vectors can be used to correctly represent a

component.

3.2) The Exact Nature of the Methodology:

Currently, most component mode synthesis applications use the normal

eigenvectors of the substructure to form the component. If all the eigenvectors of a

system are used to form the component, the complete dynamic properties of the

component are represented and an "exact" finite element solution may be obtained.

This is because, if all the modes are used, the component representation in not a Ritz

vector approximation but is instead a complete linear coordinate transformation. The

same principle holds tree for components based upon a block-K_lov sequence. It

was proven in references [10] and [27] that an n size Krylov subspace spans the entire

n dimensional space. The following theorem is an alternative demonstration of the

proposition that, if n Krylov vectors are used to form a component from a system of

33
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size n, then the same complete solutions, as found directly from finite elements or

normal modes, can be obtained.

Theorem 3.1 Given that x is an eigenvector of A, and that 2 is the

corresponding eigenvalue, then for B, where B = P1AP, P_x is the associated

eigenvector of B and 2 is the invariant eigenvalue of both B and A.

Proof - The eigensystem of A is defined as

Ax = gx (3.1)

and since, from the definition of B,

A = PBP-1 (3.2)

equation (3. I) can be re-written as

PBP-Ix = _.x (3.3)

Premultiplying by pl yields

If y is defined as PZx, then

B p-1 x = _. p-1 x (3.4)

By = l.y (3.5)
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and it is evident that the eigenvalueof this system is ;L, and that the associated

eigenvector is Plx. []

It is important to note that the only constraint on P, implicit or explicit, is that

it is an nonsingular matrix, with the same dimension as A. For P to be nonsingular

it must be of full rank, or equivalently stated, its columns must be linearly

independent. Therefore, in order for an exact coordinate transformation to be

accomplished, the vectors from which the transformation matrix is assembled must be

linearly independent. These vectors do not need to be the eigenvectors, and they do

not need to be orthogonal.

The fact that the vectors in a transformation matrix need only be linearly

independent, and not orthogonal, is already utilized in component synthesis based

upon normal eigenvectors. The transformation matrices which result from normal

mode component synthesis consist of linearly independent vectors, not orthogonal

ones. This can be demonstrated simply by inspecting the result of the matrix

transformation, as shown in equations (2.14) through (2.19). The complete reduced

mass and stiffness matrices are not diagonal. Only the modal partition of the matrices,

which does result from an orthogonal transformation, is diagonal. Therefore, even

when compared to normal eigenvectors, the use of static Ritz vectors contains no

inherent disadvantages of matrix form or accuracy, since the resulting complete

component mass and stiffness matrices in either case are not diagonal.
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In theproof of theorem3.1,the inverseof thetransformationmatrix wasused

in thepre-multiplyposition. Typically, asin equations(2.14)and(2.15),thetranspose

of the transformationmatrix is usedin this position. If a setof orthogonalvectors

makeupa transformationmatrix, thentheinverseandthetransposeof the matrixare

identical. If the vectorsareonly linearly independent,andnot orthogonal,then the

transposeandtheinverseof thetransformationmatrix arenot identical. However,in

structuraldynamics,this doesnot necessitateusingtheinverseof the transformation

matrix. In structuraldynamics,the eigensystemrepresentsthe spaceof the matrix

multiplicationM_K, which is derivedfromKx = 2Mx. The following theorem shows

that for the M1K space, use of the inverted transformation matrix and the transposed

transformation matrix is interchangeable.

Theorem 3.2 - Specifying that pr #p_, so that P is not orthonormal, and ifM_

= PrMP and K,, = prKp, which represent a transformation using the transpose, and

M b = PZMP and Kb = P_KP, which represents a transformation using the inverse, then

M,IK, = MSK h.

Proof - This may be proven by substitution. The proposition is that

M -1K_ = Mb-lKb (3.6)

and since, by definition,

M a = pr MP

K a =prKp

(3.7)
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Theseequationsmaybesubstitutedinto equation(3.6),yielding

(pr M p)-I pr K p = (p-X M p)-l p-1K p

Post-multiplying by P1KIP, and canceling, results in

(pr M p)-X pT P = (pq M p) -1

and then post-multiplying by P_MP yields,

(prMp)-IpTMp = I

(3.8)

(3.9)

(3.1o)

which reduces to

I =I • (3.11)

In summary, it was proven in theorem 3.1 that orthogonal vectors are not

required for an exact transformation, i.e., linearly independent vectors suffice. This

proof used the inverse of the transformation matrix in the pre-multiply position. With

a non-orthogonal transformation matrix, the transpose and the inverse of the

transformation matrix are, by definition, not identical. As a result, a transformation

which uses the transpose of a non-orthogonal matrix results in a mass and stiffness

matrix different from the result obtained from a transformation using the inverse of

the transformation matrix in the pre-multiply position. In theorem 3.2 it was shown

that when the transformed mass and stiffness matrices, which result from the use of
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the non-orthogonaltranspose,are combined, the result is identical to the result

obtained from using the inverse in the pre-multiply position. Obviously, the

eigensystemof thetwo transformationresultsarethenalsoidentical. Therefore,if the

dimensionof the transformationmatrix is equalto thedimensionof the component

matrix, thenRitz vectors,or any linearlyindependentsetof vectors,canform anexact

transformation. Also, if the systemis a dual matrix system,suchasoneconsisting

of a massand stiffnessmatrix, then thetransposeof the linearly independentsetof

vectorsmay be usedin the pre-multiply positionof the transformation.
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Chapter 4

Orthogonalization, the Krylov Sequence and Static Ritz Vectors

4.1) Introduction:

This chapter examines several related issues pertaining to the orthogonalization

of static Ritz vectors in the boundary flexibility method of component mode synthesis.

Efficient orthogonalization is essential to the efficiency of the methodology because

the bulk of the computing effort required to produce a static Ritz vector component

is in vector orthogonalization. Section 4.2 examines general issues concerning

orthogonalization of the vectors obtained from the Krylov sequence. The vectors

derived from this sequence must be orthogonalized with respect to previously obtained

vectors, usually using a Gram-Schmidt approach, to insure linear independence in the

transformation matrix. Various orthogonalization schemes are proposed and examined

for their accuracy, robustness, and efficiency. In section 4.3 issues concerning the use

of blocks with the Krylov sequence are discussed. These topics include orthogonality

within the block, and reducing the block to a manageable size. Algorithms containing

the new orthogonalization schemes are presented in section 4.4

4.2) Orthogonalization:

As presented in chapter 2, the static Ritz boundary flexibility method of

component synthesis is based upon the Krylov sequence. The vectors derived from

this sequence must be orthogonalized with respect to previously obtained vectors to

insure linear independence in the transformation matrix. If linear independence, or
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orthogonalityis notmaintained,numericalerrorsin thetransformationareacertainty.

In addition, for a systemof size n, the orthogonalization methodology should be

robust enough to obtain n linearly independent vectors, to insure completeness in the

representation. Orthogonalization routines such as Gram-Schmidt or modified Gram-

Schmidt can be extremely expensive computationally if implemented inefficiently.

Lanczos eigenvalue extraction was not used widely until efficient orthogonalization

schemes were implemented within the algorithm. Consistent with this, for static Ritz

vectors to be practical, the orthogonalization scheme must be accurate, robust, and

efficient.

Issues

orthogonality

examined in this section include the reason why the loss of

occurs, checking of vector orthogonality, various Gram-Schmidt

orthogonalization schemes, orthonormalization options, and alternate orthogonalization

methodologies. An appropriate, workable orthogonalization scheme is suggested.

This proposed scheme is contrasted with those used with Lanczos eigenvalue

extraction. In Lanczos eigenvalue extraction, it is

orthogonality to insure linearly independent vectors.

also important to maintain

In addition, maintaining the

orthogonality also aids in determining multiple eigenvalues, as well as maintaining the

tridiagonal form 22. As discussed in chapter 2, maintaining the tridiagonal form is not

important in the use of static Ritz vectors, when used in the boundary flexibility

method of component synthesis.
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4.2.1) Linear Independence and the Loss of Orthogonality:

It was shown in chapter 3.2 that for an n size system, n independent vectors

will form a transformation matrix which will allow an exact linear transformation.

The boundary flexibility algorithms presented in chapter 2 would not be successful in

obtaining n independent vectors without additional enhancements. Specifically, the

normalized Gram-Schmidt orthogonalization technique utilized in these algorithms is

not robust enough to obtain independent vectors which span the entire n space. It

must be said that, in typical applications, there is no requirement for the entire space

of Size n to be represented. One major advantage of component mode synthesis is a

reduction of system size. However, in some cases this loss of orthogonality begins

quite early within the Krylov sequence. As a result, no guarantee can be made that

a sufficient number of vectors, to adequately represent the component, is obtainable.

In addition, whether the component is reduced by means of sequence truncation,

vector selection, or any other approach, a correct reduction can not be guaranteed,

unless the entire dynamic space is obtainable. Therefore, the static Ritz vector

algorithm should be able to yield n independent vectors for an n size system.

Theoretically, each Krylov vector is linearly independent of previous vectors.

This can be demonstrated by inspection of equation (2.1). Since each vector is a

product of multiplication of previous vectors, except for the special cases of null or

unity spaces, each vector can not also be defined as a linear combination of previous

vectors. However, in practice, numerical dependence does occur in vectors obtained
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from a Krylov sequence.Due to this numericaldependence,n independent vectors,

describing an n size system, can not be directly obtained from the Krylov sequence.

Understanding of this problem can be aided by considering a Krylov sequence based

upon a space described by the normalized vector, x 2. Assume, in equation (2.1), that

A, the iteration matrix, is x 2 and that _, the initialing vector, is el, the unit column

matrix of order one. The Krylov sequence becomes

[ I_1 , X2el , X4el , ... , x2(j-1)£ 1 ] (4.1)

Figure (4.1) shows a plot of the resulting vectors, to the ninth order, normalized to

unity. In other words, the sequence of functions x-," x 4, x 6, x 8, x 1°, xl'-, x_4 and x 16,

have been plotted. The unit column matrix, ez, was not plotted. It can be seen that

as this series continues to a higher order, the vectors become nearly dependent

because of computational roundoff error, and eventually, numerically indistinguishable,

despite theoretical independence. The Gram-Schmidt algorithm is not able to

orthogonalize a vector which is numerically dependent on previous vectors.

An analytical source of vector dependency, not dependent on computational

roundoff, is the situation when the Krylov sequence converges to a normal

eigenvector. This state might seem to be desirable, considering the traditional use of

eigenvectors in dynamic analysis and component mode representation. (In this

circumstance the Krylov sequence acts similar to a power method of eigenvalue

extraction.) Unfortunately, when the Krylov vectors have converged and produced
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aneigenvector,thenextvectorin theKrylov sequenceis thesameeigenvector,scaled,

which is linearly dependent.Theorem4.1 demonstratestheconvergence.

Theorem4.1 - If an eigenvectorof the systemKx = ,2Mx, x_, appears in the

Krylov sequence, xi+_ = K'IMx_, then the resulting vector, x_÷l, is linearly dependent

upon x i, and differs only by a scale factor of 1/2.

Proof- If

1 (4.2)
Xi+ 1 = _ X'i

and since the Krylov sequence is defined as

Xi+l = K-IMxi (4.3)

then

which leads to

1 = K-IMxi (4.4)

Kx i = _, Mx i (4.5)

which is true, from the definition of an eigenvector. •

The potential convergence of the Krylov sequence to system eigenvectors has

several implications. It is a reason, in addition to not prejudicing the sequence

towards a certain eigenvector, that in Lanczos eigenvalue extraction, the Krylov
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sequenceshouldbe initiatedby a randomvector. In Lanczoseigenvalueextraction,

the systemwill be re-transformedto a diagonalform and sotheeigenvectorsarenot

required at that step. The potential convergenceof the Krylov sequenceto

eigenvectorsalsorestrictsshifting of thesequence23"3_.Shifting the sequenceso that

it would producea vector close to an eigenvectorwould causethe dependency

problemdiscussedabove.

In the useof generalizedstaticRitz vectors,wherethevectorswhich initiate

the sequenceandthe vectorsresultingfrom the sequencehavephysicalsignificance,

the convergenceof theKrylov sequenceto eigenvectorscancauseproblemsof linear

dependency.Consideracantileveredbeamundera gravity load. Thedeflectedshape

of thebeamis very closeto thefirst normaleigenvector.(A cantileveredbeamunder

a gravity load is usedas anexampleand is illustratedin chapter5.) If that vector

initiates the sequence,subsequentvectorswill be nearly linearly dependenton the

previousvector. The greaterthe similarity a staticRitz vectorhasto aneigenvector,

the greaterwill be thedependencyof the subsequentvector in theKrylov sequence.

In practice, total dependencydoesnot occuron digital computersdue to the same

classof roundoff errorsthatleadto therequirementfor re-orthogonalizationdiscussed

in section2.4.1. Whentwo Ritz vectorsarenearlylinearlydependent,thedifferences

between the two vectors will tend to be random, and so physically significant

information thatthevectorwill contribute,afterorthogonalization,wouldbeminimal.
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Thisrandomelementresultingfrom orthogonalizationdoeshavesomebenefit.

In Parlett22,the processof randomizationis discussed. There, randomizationis

definedasa processof creatinga setof randomvectors,afterseveralblocks of static

Ritz vectorshavebeenobtained,andthenorthogonalizingtheserandomvectorswith

thepreviousstaticRitz vectors.A Krylov sequenceinitiatedwith a vectororthogonal

to a spacerequiring representationmay havedifficulty in producingn independent

vectors for a system of size n. For example, if the initial vector does not contain a

displacement in one of the three ordinate directions, then a pure Krylov sequence

would not generate a vector representing the system in that direction. Introducing a

random element into all degrees of freedom contained in a vector, and then

orthogonalizing, would allow all possible directions and shapes to be represented.

It has been found that due to computational roundoff error an explicit

randomization routine is not necessarily required. As discussed above, when a vector

is orthogonalized with a vector upon which it is nearly dependent, the purified vector

will contain a random element. As a result, randomization occurs to some degree in

all Krylov processes implemented on a digital computer. In this manner, vectors may

be obtained which are orthogonal to the initiating vector in the Krylov sequence and

the complete n size component space may be spanned.

4.2.2) Use of The Euclidean Norm for Normalization:

In section 2.4.2, it was discussed that in the creation of static Ritz vectors,

where the Krylov sequence of equation (2.2) is used to generate the vectors, previous



46

Gram-Schmidtalgorithmsorthonormalizedthevectorswith respectto themassmatrix.

This is requiredif obtaininga tridiagonalform is desired. If the Krylov sequenceis

baseduponequation(2.1), then the Euclideannorm is used. In the implementation

of the Gram-Schmidtorthogonalizationprocedure,it was found that the useof the

massmatrix in orthonormalizationbecomescomparativelyand extremelycostly for

anythingother thana small problemsize. As a result,alternativeswereexamined.

The tridiagonal form is not a particularadvantageusingRitz vectors,asopposedto

eigenvectors,in componentmode synthesis. In componentmode synthesis,by

definition, the transformedmatriceshavelargeoff-diagonalcomponents.Therefore,

it is possibleto orthonormalizeusingtheEuclideannorm,eventhoughdoing this will

not producea diagonalmodalmassmatrix anda tridiagonalmodalstiffnessmatrix.

Again, this featureis nota disadvantagein componentmodesynthesisandvery large

savingsin computationalcost areachievable,asdocumentedin chapter5.

4.2.3) Gram-Schmidt Failure and Reorthogonalization:

The simple normalized Gram-Schmidt orthonormalization procedure outlined

in section 2.2 is inadequate to guarantee a set of orthogonal and linearly independent

set of Ritz vectors. In the previous section, it was discussed how linear dependence

can arise in vectors generated by a Krylov sequence.

Gram-Schmidt orthogonalization algorithm is not

orthogonal vector from a nearly dependent vector _s.

It is well documented that the

successful at producing an

The Gram-Schmidt procedure

will fail on occasions when vectors, although theoretically independent, are dependent
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within the numericalconstraintsof current digital computers. These vectors cannot

then be made orthogonal, using the single normalized Gram-Schmidt step described

in the chapter 2.

One option for orthogonalizing numerically nearly dependent vectors is the

modified Gram-Schmidt algorithm. Modified Gram-Schmidt is a computationally

expensive procedure which is very successful at orthogonalizing nearly dependent

vectors 4'_8. Implementation of modified Gram-Schmidt will be discussed in the next

section and its computational expense will be discussed in the next chapter. A

potentially less expensive option is to repeat the Gram-Schmidt orthonormalization,

if it has been unsuccessful in the first attempt. Reorthogonalization will work, even

though the first Gram-Schmidt attempt has been unsuccessful at producing an

orthogonal vector, because it modifies the vector enough so that it is no longer

numerically nearly dependent. The second normalized Gram-Schmidt step, or

reorthogonalization, is then usually successful at producing a orthogonal vector. Two

normalized Gram-Schmidt orthogonalizations will typically be less expensive than one

modified Gram-Schmidt orthogonalization, especially considering that the

reorthogonalization step will not be required for every Krylov vector. Computational

costs comparisons for various models will be presented and discussed in chapter 5.

If Gram-Schmidt orthonormalization is to be repeated when unsuccessful, a

assessment of the Ritz vectors' orthogonality is required. Upon completion of each

Krylov vector calculation, and the associated normalized Gram-Schmidt
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orthogonalization,eachvectoris checkedfor orthogonality.The orthogonalityof the

block-Krylov vectorsis checkedusingoneof the following equations;either

L m = ql,y_lTmii qy
(4.6)

or

LE = ql.j-1 r qj (4.7)

depending on whether the vectors have been orthogonalized with respect to the mass

matrix or using the Euclidean vector norm. (The mass matrix used in equation (4.6)

is appropriate for fixed interface modes. For the free interface approach, the complete

physical mass matrix is used.) If the new vector, qy, is orthogonal to all previously

calculated vectors, Lm or L r will be a j by 1 size null vector. The infinity norm of the

L vector, which is defined as

IILII.: max {1/11, ll2I,..., ItjlI (4.8)

is then calculated and compared to a specified value, e. If L** > e, then the associated

vector is judged to be non-orthogonal and the Gram-Schmidt algorithm is repeated.

4.2.4) Various Gram-Schmidt Orthogonalization Strategies:

A number of combinations of Gram-Schmidt orthonormalization and

reorthogonalization strategies are possible. These strategies, for the initial Gram-

Schmidt step, include complete orthogonalization and orthogonalization with the
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previous two blocks only, a possibility which wasdiscussedin section2.4. It is

possible to use modified Gram-Schmidtexclusively, however that option is not

competitive computationally. Complete reorthogonalization, selective

reorthogonalization,andselectivereorthogonalizationusingmodified Gram-Schmidt

were thereorthogonalizationoptions investigated.Orthonormalizingwith respectto

themassmatrix or usingtheEuclideanvectornormcanbeperformedwith anyof the

above possibilities. The total number of possibilities investigated,amongstthe

different combinationspossible,is twelve. Of thesetwelve, the optionswhich were

examinedandpresentedin the next chapterare,total initial orthogonalizationswith

all three reorthogonalizationoptions,andinitial orthogonalizationwith the previous

two blocks and with selectivereorthogonalization,for a subtotal of four cases.

Orthonormalizationwith respectto the massmatrix andtheEuclideannorm for the

above four caseswas also performedfor a total of eight Gram-Schmidtoptions

considered. The computationaltime requiredfor creatingcomponentmodemodels

from variousfinite elementmodels,usingthevariousGram-Schmidtoptionsdiscussed

above,is presentedin chapter5.

4.2.5) Cholesk¥/QR Orthogonalization:

Alternatives to Gram-Schmidt orthonormalization exist which perform the

orthogonalization in a matrix format, rather than a vector by vector format. Use of

explicit matrix orthogonalization can be an advantage in certain programming

applications. Gram-Schmidt is classified as a method of performing a B = QR
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decomposition, where B is a set of vectors (such as unorthogonalized Krylov vectors),

Q is the orthonormalized vector set, and R is an upper triangular matrix, which can

be assembled from the coefficients in the Gram-Schmidt algorithm. In typical Gram-

Schmidt the R matrix is not assembled or used explicitly. The QR decomposition can

be performed explicitly by using a Householder technique _8or by recognizing that the

R matrix is also the upper Cholesky factor of the B rB subspace 22. It is instructive to

note the similarity of the B rB

differences being that all vectors,

matrix multiplication with equation (4.6), the

new and previous, are included in the B matrix.

Cholesky/QR orthogonalization may be understood as a algorithm which, first,

locating the non-orthogonal vectors by the B rB multiplication, and second, determines

a transformation which will shift those vectors to an orthogonal space.

That the R transformation matrix can be determined by Cholesky

decomposition of the B rB subspace is demonstrated in the following equations. First,

the Cholesky factor is defined as follows: ifA is positive definite and symmetric then

the LU decomposition,

A = L D U (4.9)

is equivalent to

A = L DL r (4.10)
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A =LD_(LD_) r = crc (4.11)

where C = DIaL r, and is called the Cholesky factor.

shown as follows

That BrB is symmetric can be

BrB = (BrB) r = B r(B r)r (4.12)

Since the QR decomposition is defined by B = QR, then the BrB matrix

product is

B rB = (QR)TQR = R rQ r OR (4.13)

and since, by definition, QrQ = I, then equation (3.24) becomes

BrB =RrR = crc (4.14)

and because both R and C are upper triangular matrices then R = C, and therefore R

is the upper Cholesky factor of BrB.

The steps in the Cholesky/QR orthogonalization algorithm can be summarized

as follows:

1) The matrix product B rB, or using the notation of chapter 2, ql, j rqLT, is

calculated, where qLj* is the concatenation of the vectors ql,j.z defined in equation

(2.11) and the vector block q j defined in equation (2.8),
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2) The matrix productB rB, is decomposed into, RrR, where R is upper triangular.

3) The equation, RrQ r = B, is solved, with only one forward substitution required

since R r is lower triangular.

The Cholesky/QR decomposition algorithm can also be used to orthonormalize

vectors with respect to the mass matrix. If equation (4.13) is re-written as

B TMB = (QR)TMQR = R rQ rMQ R (4.15)

and since QrMQ = L if orthonormalizing with respect to the mass matrix, then

equation (4.14) can be re-written as

BrMB =RrR=CrC (4.16)

which would yield a different transformation matrix, R, and a different set of

orthogonal vectors, Q, than the previous example of orthonormalizing with respect to

the Euclidean vector norm. As discussed in section 2.4, the vectors must be

orthonormalized with respect to the mass matrix for the tridiagonal form to be

achieved, if the Krylov sequence of equation 2.2 is used. The practical aspect of the

tridiagonal form in boundary flexibility component synthesis is that each new vector

block theoretically only needs to be orthogonalized with the previous two vector

blocks.

It is evident, upon examination of the above algorithm, that Cholesky/QR

decomposition orthonormalizes a set, or subset, of vectors simultaneously. This set,
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or subset,would include all the vectorswithin a specific Krylov block, and these

vectorsarenonorthogonal.However,it is importantto notethatthepreviousvectors,

which havebeensuccessfullyorthonormalized,wouldproduceapartitionof B rB that

is the identity matrix. Decomposing and solving an identity partition produces a

transformation which does not alter vectors which formed the mutually orthonormal

subset. As a result, the theoretical description of the tridiagonal form is applicable to

vectors orthonormalized using Cholesky/QR decomposition, if, as presented above,

they have been orthonormalized with respect to the mass matrix. Theoretically then,

it is possible to orthonormalize, using Cholesky/QR, each new vector, or block, with

the previous two vectors, or vector blocks, and be orthonormal to all previous vectors,

in an identical manner as in the Gram-Schmidt algorithm. Practically, the

Cholesky/QR algorithm has an advantage over Gram-Schmidt in that, when the loss

of orthogonality occurs within the Lanczos algorithm, the inevitably of which is

discussed was section 4.2.1, it does not need to be eliminated immediately. All non-

orthogonal vectors can be reorthogonalized simultaneously at intervals, as required,

and at the termination of the Krylov sequence. The numerous repetitions of the

orthogonality checks required in some implementations of the Gram-Schmidt

algorithm is not required in the Cholesky/QR algorithm. However, a method to

automatically determine when a reorthogonalization is required, such as presented in

reference [26] for Gram-Schmidt, would be required if orthogonalization with the mass

matrix and the previous two blocks only were to be implemented practically.
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4.3) Issues Concerning the Use of Blocks in the Boundars' Flexibility Method:

In the boundary flexibility method of component synthesis, several issues of

orthogonalization and usage present themselves, due to the use of blocks in the Krylov

sequence. Nour-Omid and Clough z° described how vector blocks may be used with

Wilson's algorithm and that the results pertaining to the tridiagonal form and

orthogonalization with the previous two blocks, described in section 2.3, are

applicable. A difference resulting from the use of blocks is that orthogonalization

must be performed with the previous two blocks, not merely the previous two vectors.

Those equations will not be repeated here. The need for orthogonalization within each

block was also discussed by Nour-Omid and Clough. However, it was not presented

that, depending on the choice of the initializing vectors (forces), the vectors within the

block may be approaching linear dependency. In the boundary flexibility method of

component synthesis, nearly dependent vectors within a block can and do occur. This

is not a numerical convergence of the Krylov sequence, as discussed in section 4.2.1.

The nearly dependent vectors within a block is the natural result of the static solution

of a structure under generalized loading, such as the mass matrix multiplied by the

boundary flexibility matrix as in this dissertation. An illustrating example, is

presented in section 4.3.1.

As presented in chapter 2, the initializing block of forces in the boundary

flexibility method is the mass matrix multiplied by the constraint modes, or the

flexibility modes. The size of these matrices is therefore dependent on the size of the
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of the boundaryset of the structuralcomponentunderconsideration. In typical

aerospaceapplicationstheboundarysetof thesemodelscanbequitelarge,largerthan

can be practically used in the block-Krylov sequence. Block size reduction by

filtering can correct an excessiveblock size and this addition to the boundary

flexibility methodof componentsynthesisis presentedin section4.3.2.

4.3.1) Dependence of Vectors Within the Block:

In the boundary flexibility method of component synthesis, nearly dependent

vectors within a block result from the static solution of a structure under generalized

loading. Chapter 2 details this generalized loading as the mass matrix multiplied by

the boundary flexibility matrix. The initial set of Ritz vectors is the static response

the component exhibits for the generalized loading. There is no theoretical basis to

expect that this set of vectors within the initial, or any other, block should be linearly

independent. The boundary flexibility algorithm, as presented in reference [1] and

reviewed in chapter 2, made no orthogonality check of the vectors within the Krylov

block. Furthermore, if internal block orthogonalization is not performed, subsequent

Gram-Schmidt steps are ineffective because the blocks are orthogonalized with a set

of vectors that are not orthogonal.

Consider the case of a simple beam represented by a finite element model

consisting of only two nodes and one element. This single element model is used as

an example to demonstrate that the vectors within the initial Krylov block can be

almost linearly dependent. The beam element will be processed as a component with
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a fixed nodeinterface. The interior partition of the componentstiffnessand mass

matrix, for the simple beamelementmodel, may be obtaineddirectly from beam

theory7.

(4.17)

k. :Eli -12 -6L]'¢ L 3 6L 2L 2

(4.18)
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The inverse of kii is as follows,

k..-1 = L__33 (4.20)

" EI.__

The constraint modes are given by equation (2.5), as

(4.21)
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Becausethe componentinterfaceis staticallydeterminate,the constraintmodesare

identical to the rigid body displacementmatrix. The initial block of static Ritz

vectors,ql"', as given by equation (2.6), is

ql** = kii -1 m iit_ic =
mL 3 [41 35.666L42-0-EI 49

(4.22)

assuming a lumped mass approach. The vectors contained in ql** can be examined

for dependency. For the first vector, ql_ over q2_ is equal to .7321L. For the second

vector, q1_, over q22 is equal to .7279L. These two vectors are, once normalized,

almost identical and linearly dependent.

A large amount of dependency can also occur in larger blocks. Consider a

structure with a statically indeterminate interface. In many cases the nodes may be

positioned closely together, or in a symmetric fashion, either of which may result in

some of the constraint modes being nearly identical. Since the initial set of Ritz

vectors is the static displacement of the component to the mass matrix times the

constraint modes, it is obvious that many component models will yield nearly

dependent vectors, in the initial block.

As mentioned previously, Nour-Omid and Clough 2° presented the requirement

for orthogonalization within each block of vectors. They suggested that the Gram-

Schmidt orthogonalization procedure, as shown in equations (2.9) through (2.12) be

applied in a two step process. First, the Gram-Schmidt orthonormalizing is applied
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to eachvectorwithin eachKrylov block. Then,orthogonalizationis performedwith

thepreviousvector blocks. An alternate solution to the problem of dependent vectors

within the blocks, was presented by Su and Craig in reference [27]. In this solution

a singular value decomposition is performed on the q_**rmqi** subspace. The obtained

transformation matrix orthogonalizes the block.

The recommended method for orthonormalizing the vectors within the Krylov

block has been discussed previously in section 4.2.5, Cholesky/QR orthogonalization.

Some advantages of using Cholesky/QR decomposition to obtain an orthonormalizing

transformation matrix have already been discussed. In relation to vector blocks, this

methodology can orthogonalize a new block separately, or with the previous two

blocks, or with all previous blocks, simultaneously. One potential disadvantage is

that, if the vectors are almost linearly dependent, than the matrix to be decomposed

is numerically singular. As discussed above, this near dependence is to be expected

in even simple problems. The potential singularly of the B rB matrix product can be

solved by block filtering, which will be discussed next.

4.3.2) Block Filtering:

Block filtering is a procedure by which nearly identical, or dependent, vectors

are removed from a vector block. It is based upon a standard orthogonality check.

The use of block filtering simultaneously solves two problems. First, by filtering the

vectors, the size of the block created by the boundary flexibility method can be
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reducedto a manageablelevel. Second,it caneliminatethepotentialsingularitiesof

the B rB matrix product which is used in Cholesky/QR orthonormalization.

The first function of block filtering is block size reduction which corrects

excessive block size. The size of the block in the boundary flexibility method is

determined by the size of the boundary set of the structural component. The initial

block of forces in the boundary flexibility method is the mass matrix multiplied by the

constraint modes, or the flexibility modes. For the fixed interface method the equation

establishing the first block, (2.6), is repeated here.

ql = k ii-1 ( m ii @ ic+m ic) (2.6)

The boundary set of practical structural models, which require the use of component

mode synthesis, is usually large enough to cause problems in use of the algorithm.

For instance, a typical Space Shuttle cargo element component model might have a

boundary set of forty-eight degrees of freedom, eight nodes with six degrees of

freedom each. This would lead to a block size of forty-eight. In contrast, the default

block size in the MSC/NASTRAN implementation of the Lanczos eigenvalue

extraction method 3" is seven, with a maximum of fifteen.

There are several reasons why a large block size is a disadvantage. First, as

discussed in the previous section, many of the vectors in the blocks may be nearly

identical. The information retained after orthogonalizing these nearly dependent

vectors may not be significant, and in extreme cases may only be the product of
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numericalroundoff. In thesecasestheRitz vectorsobtainedfrom the secondKrylov

sequenceiterationaremore likely to be dynamicallysignificant than the productof

numericalroundoff. Second,truncationof theKrylov sequenceandfinal resultingset

of vectorsbecomesvery imprecise. The static Ritz vectorsaregeneratedblock by

block and so if the block size is very largemanymorevectorsthandesiredmay be

obtained. Finally, with largeblocks,orthogonalizationwithin eachblock becomes

moreexpensiveandcanbecomenumericallydifficult dueto thepreviouslydiscussed

dependencies.

Thesecondfunctionof blockfiltering is theeliminationthesingularitiesin the

B rB matrix product, which is used in Cholesky/QR orthonormalization. If two

vectors in the B matrix are nearly identical than, after normalization, the B rB matrix

will have a unity term on both (lower and upper) off-diagonal positions corresponding

to the column number of the identical vectors. Since each row of the B rB matrix has

a unity term in the diagonal position, the two rows corresponding to the two identical

vectors will be dependent, and Cholesky decomposition becomes problematic. If one

of the two vectors is eliminated by block filtering than decomposition can be

accomplished. No information is lost in the block filtering because, by definition, the

vectors in question are nearly identical, and so the discarded vector is a duplication.

The block filtering procedure can be summarized as follows:

1) The vectors within the block, q_*, are normalized as follows

• , , , -112 (4.23)
qj = qj [<diag(qy* r muqj )>cc ]
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or, depending on the orthonormalization selection,

qj = qj [<diag(qj" r qj_,,)>cc-112,1 (4.24)

where d/ag is defined as the diagonal terms of the matrix product and the exponent,

._/z, is applied to each term within the resulting diagonal matrix, not to the complete

matrix itself.

2) The cross-orthogonality of the vectors is calculated

Lm = qj* r miiqy* (4.25)

or, depending on the orthonormalization selection,

Le = qj, r q], (4.26)

At this point no orthogonalization has occurred and so there is no reason to expect the

matrix product to result in the identity matrix. In this way, the above equations differ

from equation (4.6) and (4.7).

3) The L matrix is partitioned into its lower triangular portion, excluding the diagonal

terms.

4) The infinity norm, as defined in equation (4.8), of each column in the resulting

lower triangular matrix is calculated. These terms are compared to an arbitrary filter

value, e, determined by practice to be initially set to .995. Vectors with associated

terms greater than this value are partitioned from the normalized block.
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5) The sizeof the revisedblock is determinedand if the block is too small or too

large then the filter value is raised or lowered, respectively, and step 4) is

subsequently repeated. The minimum value for a block has been set at six and the

maximum at eighteen.

4.4) Summary_ and Revised Orthogonalization Algorithm:

The following tables contain revised orthogonalization algorithms for the

boundary flexibility method of component synthesis, using static Ritz vectors. These

algorithms are a synthesis of the basic methodology described in section 2.2 and the

revisions and additions to the method which have been presented in this chapter.

Table (4.1) presents the algorithm using the mass matrix for orthonormalization. This

algorithm initially orthonormalizes with the previous two vector blocks, and then at

intervals, and at the termination of the sequence, full reorthogonalization occurs.

Table (4.2) presents the algorithm using the Euclidean vector norm for

orthonormalization. Both algorithms are presented for fixed interface components,

however, for free interface components the body of algorithms presented are identical.

The initialization and transformation of the free interface component are different, as

documented in section 2.2.
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After the assemblyof the componentmass,m, and stiffness, k, matrices:

1) Initialization

2)

_i_ = -kii -1 kic

q_ = kii-l(mii @ic+mic)

[create boundary flexibility matrix, kii

and k;c were defined in equation (2.3)]

[create the initial block]

(For a free interface component, (If the component has rigid body modes then

the elastic flexibility matrix, g,, defined by (2.35) through (2.39) is used):

gcc 1 = k-tga = where g
tg_J

q:=gmg.

Filtering of Initial Block

ql = qx [<diag(ql* r ra.ql.)>cc]-ll2

Lm = ql** rmii ql**

If (< I_m I1®>c) > e, than dependent

•. [." ]ql -" ql qDEP

[boundary flexibility matrix]

[create the initial block])

[normalization]

[cross orthogonality]

[partition into lower triangular]

[infinity norm of each vector]

[partition out dependent vectors]

Table (4.1) - Revised Boundary Flexibility Algorithm

Using Orthonormalization With Respect to the Mass Matrix



64

3) Orthonormalizationof theInitial Block

***r lit**

L *m= ql mii ql

L'. =RTR

T T ***
R ql = ql

4) For Blocks j = 2,3 ..... 1

qj = kii -1 muqj_ 1

q;* = qj" [<d/ag(qy* r miiqi. ) >cc]-112

* T TIi **Lm = qj* ii qj

If (< II/_,.ll®>c) > e, than dependent

** -' [q;** qD£P]qj

[BrMB matrix product]

[Cholesky factor decomposition]

[Solve by forward substitution]

[Krylov sequence]

[normalization]

[cross orthogonality]

[partition into lower triangular]

[infinity norm of each vector]

[partition out dependent vectors]

Table (4.1) (Continued) - Revised Boundary Flexibility Algorithm

Using Orthonormalization With Respect to the Mass Matrix

L_ qj, j-l,j-2*** T *'"= 171ii qj, j-l,j-2

L*m = RrR

T T ***
R qj,j-l,j-2 = qj,j-l,j-2 [Solve by forward substitution]

[Cholesky factor decomposition]

[BrMB matrix product]

5) Orthonormalization (At intervals, orthonormalize with all previous blocks)

(when j = l, transform system to form component)
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After the assemblyof the component mass, m, and stiffness, k, matrices:

1) Initialization

2)

dPic = -kii -1 k_

ql = kii -1 (mii _ ic+m ic)

[create boundary flexibility matrix, kgg

and kgc were defined in equation (2.3)]

[create the initial block]

[For a free interface component, (If the component has rigid body modes then

the elastic flexibility matrix, g,, defined by (2.35) through (2.39) is used):

Igcc] =k -1 [boundary flexibility matrix]ga = where g

J

q:=gmg_

Filtering of Initial Block

** *T n *'1> 1-112ql = ql*[<diag(ql ,_1 , cc_

LE = ql** r ql**

If (< I_ell.>c) _ e, than dependent

""[ "'" 1ql " qs qDEP

[create the initial block]]

[normalization]

[cross orthogonality]

[partition into lower triangular]

[infinity norm of each vector]

[partition out dependent vectors]

Table (4.2) - Revised Boundary Flexibility Algorithm

Using Orthonormalization With the Euclidean Vector Norm
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3) Orthonormalizationof the Initial Block

L_ ***T ***= ql ql

LE=RrR

qr **.RT =ql

4) For Blocks j = 2,3 ..... l

q_ =ku-lmiiqj-1

q;* = qj" [< d/ag (qy* T qj,) >cc]-1/2

*T- **

Le = qj* qj

If (< 111,Ell**>c) _ e, than dependent

5) Orthonormalization (each block)

LE = _,j 1,jq ,,,rq ***

L*E = RrR

Rr q_, = ***j ql,j

[BrB matrix product]

[Cholesky factor decomposition]

[Solve by forward substitution]

[Krylov sequence]

[normalization]

[cross orthogonality]

[partition into lower triangular]

[infinity norm of each vector]

[partition out dependent vectors]

(when j = l, transform system to form component)

[BrB matrix product]

[Cholesky factor decomposition]

[Solve by forward substitution]

Table (4.2) (Continued) - Revised Boundary Flexibility Algorithm

Using Orthonormalization With Respect the Euclidean Vector Norm
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Figure (4.1) - NormalizedVectorsObtainedfrom a Krylov Sequenceof

Order Nine, with x-' as the Iteration Matrix



Chapter 5

Numerical Examples of Orthonormalization

5.1) Introduction:

The following chapter describes the method with which the algorithms

presented in chapter 4 were implemented. Also included are a number of illustrative

examples of theoretical concepts, timing comparisons, and descriptions of algorithm

trials on practical models. The software and hardware, and finite element models used

in these examples is also described.

5.2) Tools and Programming:

The algorithms presented in section 4.3 were implemented in

MSC/NASTRAN 32, Version 67. The use of a standard, commercially available

computer program allows the results of this work to be transferred easily to other

structural dynamists. Adding the static Ritz vector algorithms to MSC/NASTRAN is

implemented by the use of the internal programming language called DMAP (Direct

Matrix Abstraction Programming). The standard solution sequences of

MSC/NASTRAN are written in DMAP, and the source code of MSC/NASTRAN is

available at the DMAP level. For example, equations (2.3) through (2.5), (creation

of structural mass and stiffness matrices, partition, and constraint mode creation) and

(2.16) through (2.23) (transformation into the modal component) are currently

contained in the standard MSC/NASTRAN normal modes solution sequence. The

equations presented in Tables (4.1) and (4.2) were written using DMAP, and were
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then incorporatedinto the MSC/NASTRAN normal modessolution sequence. In

addition, Gram-Schmidt orthonormalization was also implemented, to allow

comparisonswith thepresentedCholesky/QRdecompositionalgorithm.

A CrayX-MP runningunderthe UNICOSoperatingsystemwastheresident

hardwarerunningtheversionof MSC/NASTRANutilized. This fact is relevantwhen

consideringthetiming numberspresentedin section5.4.

5.3) Finite Element Models:

All finite elements models were created using standard MSC/NASTRAN.

They required no special processing. The normal modes solution sequence created the

finite element component mass and stiffness matrices and performed the partitions into

internal and external degrees of freedom. They were then ready to be processed by

the boundary flexibility algorithm using Ritz vectors.

5.3.1) Simple Beam Model:

The first example case of a simple beam was derived from a finite element

model of the Space Station Freedom photovoltaic array central mast. The length of

the beam was 1179.9 inches. The modulus of elasticity, E, was 10.1 x 10 6 lbs/in 2 and

the moment of inertia of the cross section was 108.9 in4. Its weight per unit length

was .2296 lbs/in. The simple beam was modeled with eleven nodes and ten beam

finite elements. Several different boundary conditions, both at the component and

system level, were imposed upon this beam, yielding cantilevered and free-free

conditions. The different boundary conditions cases will be described in section 5.4.

69
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5.3.2) Space Station Electrical Power System Radiator:

The next example used was a finite element model of the Space Station

Electrical Power System (EPS) Radiator (Figure (5.1)). The main contractor

constructing the EPS Radiator is Loral Vought Systems. Its purpose is to expel excess

heat created by Space Station Electrical Power System into space. The structure

weighs approximately 1440 pounds and, when deployed, is approximately 50 feet long

and 12 feet wide. The finite element model representing this structure was created by

Loral Vought Systems (Figure (5.2)). This finite element model contains

approximately 4000 degrees of freedom. With the boundary degrees of freedom fixed,

the EPS Radiator finite element produces eight normal modes below 5 Hz, the first

three being at .19, .73, and .94 Hz (Figures (5.3), (5.4), and (5.5), respectively).

5.3.3) Cassini Spacecraft:

The third example used was a finite element model of the Cassini Spacecraft

deep space probe (Figure (5.6)). The primary organization responsible for the Cassini

spacecraft is the Jet Propulsion Laboratory of the California Institute of Technology

and NASA. This spacecraft will be launched upon a Titan IV launch vehicle and will

explore the Saturn planetary system. The structure weighs approximately 12,890

pounds and is approximately 23 feet long and 14 feet wide. The finite element model

representing this structure was created by the Jet Propulsion Laboratory (Figure (5.7)).

This finite element model contains approximately 11,100 degrees of freedom. With

the boundary degrees of freedom fixed, this Cassini finite element model produces
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sixty-threenormalmodesbelow 50Hz, thefirst threeprimarystructuralmodesbeing

at 7.36 (bending),7.70 (bending),and 15.78Hz (torsion).

5.4) Numerical Results:

The following numerical examples can be divided into two groups. The first,

contained in sections 5.4.1 and 5.4.2, are illustrations of some of the theoretical

properties, presented in chapter 4, of generalized static Ritz vectors in the boundary

flexibility method. These examples also serve to validate the correctness of the

implementation of the presented theory. Sections 5.4.3 and 5.4.4 contain examples

of a more practical nature. These examples serve to provide a physical understanding

of the methodology and its benefits in terms of computer cost.

5.4.1) Numerical Illustrations of Theoretical Properties:

If a number of Ritz vectors, equal to the number of degrees of freedom in a

finite element model, are used to form a component, then those vectors do not

represent a Ritz approximation but are an exact transformation. That a component

so formed is exact was proven in section 3.2. A demonstration of that proof, and of

the correct implementation of the boundary flexibility/static Ritz vector methodology

and algorithms presented in chapter 4, is shown in Table (5.1). A complete set of

Ritz vectors, equal to the number of degrees of freedom in the beam model, were

calculated. The interface was assumed to be fixed and so the beam was cantilevered.

A boundary flexibility component model was subsequently formed. The normal

eigenvalues of the transformed component were then calculated and compared to the
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eigenvaluesobtaineddirectly from thefinite elementmodelof thecantileveredbeam.

This is the comparisoncontainedin Table (5.1).

The crossorthogonalityof theRitz vectors,asdefinedin equations(3.6) and

(3.7), used in the exact transformationdiscussedin the precedingparagraph,were

calculated. The six largest pairs of off-diagonal terms resulting from the cross

orthogonalitycalculationfor two different casesaregivenin Tables(5.2) and (5.3).

The vectorsusedto form thematrix, from which thetermscontainedin Table (5.2)

were extracted,were orthonormalizedwith respectto massmatrix. In order to

facilitate obtainingtheexacttransformation,orthonormalizationwasperformedon all

previousvectorsat eachstepin theKrylov sequence,not with just the previous two

vectorblocks. The vectorsusedto form thematrix, from which the termscontained

in Table(5.3)wereextracted,wereorthonormalizedusingtheEuclideanvectornorm.

The orthogonalitypropertiesof the Krylov sequenceareillustratedin Tables

(5.4) and (5.5). As wasdiscussedin section2.3, theoretically,if Ritz vectorsare

orthonormalizedwith respectto the massmatrix and the precedingtwo blocks of

vectors,then they areorthogonalwith all previouslycalculatedvectors. Table (5.4)

containsthe orthogonalitycheckof the first five blocks of vectorsproducedfor the

cantileveredbeamexampledescribedabove,orthonormalizedwith respectto themass

matrix. Theoretically, all vectorsshouldbe mutually orthonormaland this matrix

shouldbe theidentity matrix. Theextremelylargetermsatposition(1,30) and(30,1)

of the matrix are illustrative of the inherentbreakdownof orthogonalitywhich was
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discussedin section4.2.1, anddemonstratedby Theorem4.1. The rapidcreationof

non-orthogonalvectors in this small idealized exampleclearly demonstratesthe

requirementfor re-orthogonalization. When calculating Ritz vectors for a more

realisticproblem,therequirementfor continualre-orthogonalizationcanoutweighthe

advantagesof orthogonalizationwith just theprevioustwo blocksandit canbecome

moreefficient to orthogonalizewith all previousvectorblocks.

Table (5.5)alsocontainsanorthogonalitycheckwith theprevioustwo vector

blocks. However, in this examplethe vectorshavebeenorthogonalizedusing the

Euclideanvector norm. There is no theoreticalreasonwhy thesevectorsshouldbe

orthogonalwith all previousvectorsandtheyarenot. Thevectorsareorthogonalwith

theprevioustwo blocks,but non-orthogonalityis manifestbetweenthe othervectors.

Specifically, the vectorsin block four of theexamplearenot orthogonalwith those

in block one and the vectorsin block five are not orthogonalwith the vectors in

blocks one and two. As a result, whatever advantagesexist for using

orthonormalizationwith the Euclideanvector norm must be weighed against the

requirementfor orthogonalizationwith all previous vectors or more difficult re-

orthogonalization.

5.4.2) Numerical Illustrations of Block Issues:

The Krylov block issues of dependence, size, and filtering, which were

discussed in section 4.3, can be illustrated by the following example, using the EPS

Radiator finite element model. This model has a boundary set of six nodes, which is
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atypical sizein practicalaerospaceapplications.Thesix nodeseachhavesix degrees

of freedomandsotheboundarysetin this componentmodelhasthirty-six degreesof

freedom,which in turn leadsto thirty-six constraintmodesandan initial block size

of thirty-six. Clearly, as discussedin section4.3, this is an unwieldy amountof

vectorsto process.Thecross-orthogonalityof the initial block is presentedin Table

(5.6). As canbe seen,this is a largematrix which containsmanynearly identical

vectors,as identifiedby themanycross-orthogonalitytermsapproachingunity. This

is a further demonstrationof the initial nonorthogonalityof vectorswithin a block.

The initial, largeblock of vectorswas filtered to producea new setof eight vectors.

The cross-orthogonalityof thefiltered vectorblock presentedin Table (5.7). Since

only nearly identical vectorswereremoved,thefiltered vectorblock containsalmost

the identicalresponseinformationastheoriginal block, is a moreconvenientsize to

work with, and is numericallycleanerandeasierto orthonormalize.

5.4.3) Simple Beam Numerical Results:

A component representation of the ten element beam finite element model was

created using the boundary flexibility method and static Ritz vectors. The fixed

interface approach, with constraint modes and two Krylov blocks, was used to form

the component. The interface of the component consisted of one node and six degrees

of freedom. The number of constraint nodes is equal to the number of interface

degrees of freedom, and the size of the Krylov block is equal to the number of

constraint modes. Therefore, each Krylov block contained six Ritz vectors. Since the
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componentmodelwasformedwith two Krylov blocks,it containeda total of twelve

generalizedcoordinates.

Plotsof the lateralstaticRitzvectors,whichrepresentedthecantileveredbeam,

are shown in Figures (5.8-11). The unorthogonalizedvectors, as produced by

equations(2.6) and(2.8),or asgiven in Table(4.1), areshownin Figures(5.8-9)(a)

and (5.10-11)(a),respectively.The first normalizedvector,asproducedby equation

(2.7), is given in Figure (5.8)(b). (The first vector does not need to be

orthogonalized.)Theremainingorthogonalizedandnormalizedvectors,asproduced

by equation(2.12),aregivenin Figures(5.9-11)(b). The first two unorthogonalized

vectors(givenin Figures(5.8-9)(a)),which arein the first Krylov block, appearto be

nearly identical. The first static Ritz vector producedby the boundaryflexibility

methodis similar to the classicfirst bendingnormal modeshapeof a beam. After

orthonormalization, the second static Ritz vector has been modified into the classic

second bending normal mode shape (as shown in Figures (5.8-9)(b)).

The similarity of the Ritz vectors to the normal modes of a cantilevered beam

provides an important insight into the numerical difficulties of orthogonalizing vectors

which result from the Krylov sequence. It was shown in theorem 4.1, section 4.2.1,

that the Krylov sequence converges to an eigenvector. In other words, when an

eigenvector is input into the sequence, it produces the same eigenvector. The resulting

complete vector dependency will cause numerical orthogonalization to be very

difficult. Even when the Ritz vectors closely resemble the normal modes, but are not
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exactly the normal modes,near duplication of thesevectors from the subsequent

Krylov iteration occurs. This convergence to normal modes is the potentially

important disadvantage of creating boundary flexibility static Ritz vectors which

closely resemble normal modes. This convergence also partially explains the high

degree of nonorthogonality evident in Tables (5.4) and (5.5).

The eigenvalues of the reduced component subspace were then calculated to

evaluate the static Ritz vector representation. The first five single plane natural

frequencies from this reduced system are shown in Table (5.8). For comparison,

Table (5.8) also includes the frequencies of a reduced system where the component

was formed using traditional normal modes. This component was also formed with

a fixed interface, but thirteen normal modes were used for numerical convenience.

The full, or "exact", finite element eigenvalue solution is also shown. In the case of

the Ritz vectors, no modal selection of any kind was used. For the case of the normal

modal component, modal selection by truncation was used. The superior accuracy of

the normal modal component, in the fourth bending mode, does not necessarily

represent a limitation of the boundary flexibility methodology, but instead

demonstrates the requirement for an adequate Krylov sequence truncation criteria.

This subject will be discussed in chapter 7.

In addition to the fixed interface example, two free interface examples were

created. Both were based on the same ten element beam finite element model, but

with different boundary conditions. The first free component model considered was
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free-fixed,with thecomponentinterfacebeingthefreeboundarycondition,andhence

it had no rigid-body modes. Equations(2.20)through(2.34)definethe formulation

of this free interfacecomponent.This componentwasalsoformedwith two Krylov

blocks, and thereforetwelve Ritz vectors. Table (5.9) presentsthe first five single

planesystemnaturalfrequenciesof thereducedcomponentsubspace,comparedto the

natural frequenciesof the full finite elementmodel. The secondfree component

model consideredconsistedof the ten element beam with free-free boundary

conditions and six rigid body modes. Equations(2.35) through (2.42) define the

formulationof this component. Table(5.10)containsthe six rigid body frequencies

andthe first four singleplaneelasticfrequenciesof thereducedcomponentsubspace,

comparedto thefrequenciesof thefull finite elementmodel. In thetwo free interface

cases,there is no comparisonwith the normalcomponentmodesynthesis. This is

becausestandardfree-interfaceMSC/NASTRAN routine doesnot use the "Rubin-

MacNeal"method,andso a direct comparisonwasnot performed.

5.4.4) Timing Comparisons:

Static Ritz vector component models were formed using the boundary

flexibility methodology for the EPS Radiator finite element model and the Cassini

spacecraft finite element model. A variety of options was used in performing these

computer runs. Orthonormalization was performed using Cholesky/QR and Gram-

Schmidt, and with respect to the mass matrix and with the Euclidean vector norm.

When orthonormalizing with respect to the mass matrix, orthonormalization was
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performedboth with all previousblocksandwith theprevioustwo blocks,asallowed

theoretically.WhenGram-Schmidtwasused,reorthogonalizationwasperformedwith

all vectors,with selectedvectors,and with selectedvectorsusing modified Gram-

Schmidt. Thetiming comparisonsarepresentedin Table(5.11)for theEPSRadiator,

andTable(5.12) for theCassini. In thesecomparisonsa specified,consistentnumber

of Ritz vectorswascreated.The numberof vectorsspecifiedwassufficient to create

an accuratecomponent,for anarbitraryfrequencycutoff. A Cray X-MP, usingthe

UNICOS operatingsystem,wasthecomputerhardwaresystemusedto performthese

timing comparisons.

The algorithms were implemented using DMAP, in version 67 of

MSC/NASTRAN. As a result, some caution should be used in interpreting the timing

comparison data. Each DMAP module calls an independent set of compiled fortran

routines, and each call takes a certain amount of computer time, which is essentially

overhead. As a result, a large sequence of DMAP statements, especially a loop which

will be repeated many times, will not be efficient as programs written in some

compiled computer languages, such as FORTRAN. The results of the modified Gram-

Schmidt reorthogonalization option would be particularly misleading, because of the

large number of separate DMAP calls. On the positive side, the results for static Ritz

vector, boundary flexibility component synthesis represent a lower bound estimate of

the likely improvement in computer time. If implemented more efficiently, such as

in the FORTRAN code of NASTRAN, this methodology should demonstrate a greater
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time savingsin forming thecomponentthen thealreadysignificantamountshownfor

theCassinimodelin Table(5.12). TheCassinispacecraftmodelwas thelargestfinite

elementmodelconsidered.
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Mode Ritz Normal Modes

1 .5463995 .5463995

2 .5463995 .5463995

3 3.414649 3.414649

4 3.414649 3.414649

5 9.522067 9.522067

6 9.522067 9.522067

7 18.56508 18.56508

8 18.56508 18.56508

9 27.57835 27.57835

10 30.53347 30.53347

11 30.53347 30.53347

12 45.41006 45.41006

13 45.41006 45.41006

14 63.18172 63.18172

15 63.18172 63.18172

16 81.89710 81.89710

17 83.59296 83.59296

18 83.59296 83.59296

19 84.63568 84.63568

20 104.4086 104.4086

21 104.4086 104.4086

22 133.7274 133.7274

23 151.3342 151.3342

24 151.3342 151.3342

25 181.4946 181.4946

26 182.6918 182.6918

27 182.6918 182.6918

28 223.0661 223.0661

29 223.0661 223.0661

30 223.7470 223.7470

31 251.5984 251.5984

32 259.2011 259.2011

33 271.7271 271.7271

34 271.7271 271.7271

35 286.7794 286.7794

Table (5.1) - A Comparison of Cantilevered Beam Frequencies (Hz)

Obtained From a Static Ritz Component Transformed into Normal Eigenvalues

and a Direct Normal Eigenvalue Solution
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Ritz Normal Modes

36 305.6441 305.6441

37 315.2220 315.2220

38 329.7375 329.7375

39 329.7375 329.7375

40 397.8221 397.8221

41 397.8221 397.8221

42 411.6982 411.6982

43 473.4397 473.4397

44 473.4397 473.4397

45 543.8633 543.8633

46 543.8633 543.8633

47 560.5679 560.5679

48 692.9518 692.9518

49 692.9518 692.9518

50 694.1468 694.1468

51 808.7912 808.7912

52 901.3738 901.3738

53 969.3694 969.3694

54 1010.923 1010.923

Table (5.1)(Continued) - A Comparison of Cantilevered Beam Frequencies (Hz)

Obtained From a Static Ritz Component Transformed into Normal Eigenvalues

and a Direct Normal Eigenvalue Solution



Row t, Selected Columns

1,1) 1.0000e+00 1,54) 1.9043e- 14

Row 6, Selected Columns

6,6) 1.0000e+00 6,54) - 1.4917e- 14

Row 12, Selected Columns

12,12) 1.0000e+00 12,54)-1.6464e-14

Row 13, Selected Columns

13,13) 1.0000e+00 13,54) 1.3798e-14

Row 39, Selected Columns

39,39) 1.0000e+00 39,51)-1.3741e-14

Row 49, Selected Columns

49,49) 1.0000e+O0 49,54)-2.2577e-14

Row 51, Selected Columns

51,39)-1.3741e-14 51,51) 1.0000e+00

Row 54, Selected Columns

54,1) 1.9043e-14 54,6) -1.4917e-14

54,49)-2.2577e-14 54,54) 1.0000e+00

82

54,12) - 1.6464e- 14 54,13) 1.3798e-14

Table (5.2) - The Largest Off-Diagonal Terms From an Orthogonality

Check of the Static Ritz Vectors Representing a Cantilevered Beam,

Using Orthonormalization With Respect to the Mass Matrix
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Row 39, Selected Columns

39,39) 1.0000e+00 39,51) 9.4066e-15

Row 40, Selected Columns

40,40) 1.0000e+00 40,51) 8.4148e-15

Row 42, Selected Columns

42,42) 1.0000e+00 42,54)-1.7574e-14

Row 43, Selected Columns

43,43) 1.0000e+00 43,54) 1.184%-14

Row 48, Selected Columns

48,48) 1.0000e+00 48,54) 1.2303e-14

Row 49, Selected Columns

49,49) 1.0000e+00 49,54) 2.1308e-14

Row 51, Selected Columns

51,39) 9.4066e-15 51,40) 8.4148e-15

R.ow 54, Selected Columns

54,42) -1.7574e-14 54,43)

54,49) 2.1308e-14 54,54)

51,51) 1.0000e+00

1.1849e-I4 54,48) 1.2303e-14
1.0000e+00

Table (5.3) - The Largest Off-Diagonal Terms From an Orthogonality

Check of the Static Ritz Vectors Representing a Cantilevered Beam,

Using Orthonormalization With the Euclidean Vector Norm
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Block One

1,1)

2,2)
3,3)

4,4)

5,5)

6,6)

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

Block Two

7,7) 1.0000e+00

8,8) 1.0000e+00

9,9) 1.0000e+00

10,10) 1.0000e+00

11,11) 1.0000e+O0

12,12) 1.0000e+O0

Block Three

13,13) 1.0000e+00

14,14) 1.0000e+00

15,15) 1.0000e+00

16,16) 1.0000e+00

17,17) 1.0000e+00

18,18) 1.0000e+00

Block Four

19,19) 1.0000e+00

20,20) 1.0000e+00

21,21) 1.0000e+00

22,22) 1.0000e+00

23,23) 1.0000e+00

24,24) 1.0000e+00

Block Five

25,1) 1.6720e-02

26,26) 1.0000e+00

27,27) 1.0000e+00

28,3) 9.8957e-02

29,29) 1.0000e+O0

30,1) 5.8706e-01

1,25) 1.6720e-02

3,28) 9.8957e-02

25,25) 1.0000e+00

28,28) 1.0000e+00

30,30) 1.0000e+00

1,30) 5.8706e-01

Table (5.4) - The Cross Orthogonality of Static Ritz Vectors

Created by Orthonormalizing With the Previous Two Blocks,

Using Orthonormalization With Respect to the Mass Matrix
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Block One

I,I)

2,2)

3,3)
4,4)

5,5)
6,6)

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

Block Two

7,7) 1.0000e+00

8,8) 1.0000e+00

9,9) 1.0000e+O0

10,10) 1.0000e+00

11,11) 1.0000e+00

12,12) 1.0000e+O0

Block Three

13,13) 1.0000e+O0

14,14) 1.0000e+00

15,15) 1.O000e+00

16,16) 1.O000e+00

17,17) 1.0000e+00

18,18) 1.0000e+00

Block Four

19, I) -9.9924e-01

20,2) -9.9135e-01

21,3) -9.9924e-01

22,3) 3.8427e-02

23,23) 1.0000e+00

24,1) -3.8427e-02

Block Five

25,6)

26,2)

27,4)

28,9)

29,29)

30,7)

1,19) -9.9924e-01 1,24)

2,20) -9.9135e-01 2,26)

3,21) -9.9924e-01 3,22)

4,21) -3.9085e-02 4,22)

-3.8427e-02

-1.2688e-01

3.8427e-02

-9.8199e-01

6,19) 3.9085e-02 6,24) -9.8199e-01

7,25) -4.9289e-02 7,30)

8,26) -2.5613e-01

9,27) -4.9289e-02 9,28)

10,28) -7.4190e-02

12,30) -7.4190e-02

19,6) 3.9085e-02 19,19)

20,20) 1.0000e+00

21,4) -3.9085e-02 21,21)

22,4) -9.8199e-01 22,22)

24,6) -9.8199e-01 24,24)

-1.8463e-01 25,7) -4.9289e-02 25,25)

-1.2688e-01 26,8) -2.5613e-01 26,26)

1.8463e-01 27,9) -4.9289e-02 27,27)

-9.9601e-01 28,10) -7.4190e-02 28,28)
1.O000e+00

9.9601e-01 30,12) -7.4190e-02 30,30)

9.9601e-01

-9.9601e-01

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

1.0000e+00

4,27)

6,25)

1.8463e-01

-1.8463e-01

Table (5.5)- The Cross Orthogonality of Static Ritz Vectors

Created by Orthonormalizing With the Previous Two Blocks,

Using Orthonormalization With the Euclidean Vector Norm
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Rqw I, (_olumns I Th_ _6

I) 1.0000e+00 -9.9999e-01 -9.9604¢-01

11) 7.5250e-01 -L6221e-01 -9.9941e-01

21) -9.9854¢-01-9.9967e-01 9.9860e-01

31) 9.9951e-01 9.9954e-01-9.9908e-01

Row 2. Columns I Thru 36

1) -9.9999e-01 1.0000e+00 9.960[e-01

lI) -7.5179e-01 1.5939e-01 9.9931¢-01

21) 9.9867e-01 9.9969e-01-9.9872¢-01

31) -9.9937¢-01-9.9941e-01 9.9888e-01

Row 3. Columns I Thru 36

1) -9.9604¢-01 9.9601e-01 1.0000e+00

11) -6.9905e-01 1.0225e-01 9.9328¢-01

21) 9.9044¢-01 9.9359e-01-9.9057e-01

31) -9.9442e-01-9.9452¢-01 9.9475e-01

Rgw 4. Columns I Thru 36

1) -9.9996e-01 9.9995¢-01 9.9615¢-01

]l) -7.5412¢-01 1.6492e-01 9.9947e-01

21) 9.9843e-01 9.9965e-01-9.9848e-01

31) -9.9956e-01-9.9959e-01 9.9901¢-01

Row 5. Columns I Thru 36

-9.9996e-0 1 9.5350e-01

-9.9906e-01 -9.9289e-01

9.9959e-01 -9.7430e-01

-9.9963e-0 ] -9.9900e-01

9.9995e-01 -9.5348e-01

9.9896e-01 9.9282e-01

-9.9964¢-01 9.7493¢-01

9.9951e-01 9.9879e-01

9.9615e -0 1 -9.7650e-01

9.9217e-01 9.8160e-01

-9.9359e-01 9.8418e-01

9.9450e-01 9.9456e-01

1.0000e+O0 -9.5398e..01

9.9915e-01 9.9343e-01

-9.996 le-0l 9.7366¢-01

9.9963¢-01 9.9892e-01

1) 9.5350e-01-9.5348e-01-9.7650e-01-9.5398e-01 1.0000e+00

]1) 5.4647e-01 5.0223e-02-9.4547e-01-9.4255e-01-9.2212e-01

21) -9.3835e-01-9.4610e-01 9.3865e-01 9.4636e-01-9.763%-01

31) 9.4900e-01 9.4928e-01 -9.508%-01 -9.4899e-01 -9.5045e-01

Row 6. Columns I Thru 36

1) -9.9999e-01 1.0000e+00

II) -7.5237e-01 1.5987e-01

21) 9.9874¢-01 9.9972e-01

31) -9.9937e-01 -9.9940e-01

1_9w 7. Columqs I Tlwu 36

1) -9.7551e-01 9.7619e-01

ll) -6.0711e-01 -5.8122e-02

21) 9.7127e-01 9.7230e-01

31) -9.6844¢-01 -9.6868(:-01

Row 8. Columns I Thru 36

1) -9.9976e-01 9.9971e-01

11) -7.6648e-01 1.8253e-01

21) 9.9902e-01 9.9988e-01

31) -9.997%-01 -9.9980¢-01

Row 9. Columns I Thru 36

1) 9.9978e-01 -9.9973¢-01

I1) 7.6607e-01 -1.8215e-01

21) -9.9895e-01 -9.9987e-01

31) 9.998 le-01 9.9982e-01

Row 10. Columns 1 Thru 36

I) -9.9964e-01 9.9959e-01

11) -7.6582e-01 1.8200e-01

21) 9.9856e-01 9.9967e-01

31) -9.996ge-01 -9.9970e-01

F, ow I I. Columns 1 Thru 36

1 ) 7.5250e-0 1 -7.5179e-01

9.9589e-01 9.9994¢-01-9.5308e-01

9.9933¢-01 9.9898e-01 9.9290e-01

-9.9879e-01-9.9967e-01 9.7481e-01

9.9886e-01 9.9951e-01 9.9878e-01

9.8395¢-01 9.7488e-01-9.7285e-01

9.6749e-01 9.6537e-01 9.4835e-01

-9.7154¢-01-9.7271e-01 9.997ge-01

9.6838e-01 9.6942e-01 9.6805e-01

9.9409e-01 9.9975e-01-9.4745e-01

9.9989e-01 9.9975e-01 9.9490e-01

-9.9905e-01-9.9978e-01 9.6940e-01

9.9922e-01 9.9980e-01 9.9916e-01

-9.9425e-01-9.9979e-01 9.4793e-01

-9.9990e-0 1 -9.9974e-01 .9.9492e-01

9.9898e-01 9.9978e.01-9.6951e-01

-9.9921 e-01 -9.9987e-01 -9.991.5e-01

9.9473e-01 9.9979e-01-9.4997e.01

9.9975e-01 9.9960e-01 9.9536e-01

-9.9856e-01-9.9966e-01 9.6944¢-0t

9.9885e-01 9.9967e-01 9.9876e-01

-6.9905e-01

-9.9999e-01-9.7551e-01-9.9976e-01 9.9978e-01-9.9964¢-01

-9.9924¢-01-9.4312e-01 9.9905e-01-9.9947e-01 9.9967e-01

-9.9972e-01 9.9975e-01-9.9973e-01 7.8313e-01 1.3869e-02

-9.9952e-01

1.0000e+00 9.7619e-01 9.9971e-01-9.9973e-01 9.9959e-01

9.9916e-01 9.4310e-01-9.9895e-01 9.9954¢-01-9.9971e-01

9.9968e-01-9.9971e-01 9.9968e-01-7.8530e-01-1.5068e-02

9.9938e-0 1

9.9589e-01 9.8395e-01 9.9409e-01-9.9425e-01 9.9473e-01

9.9282e-01 9.2030e-01-9.9210e-01 9.9320e-01-9.9385e-01

9.9381e-01-9.9433¢-01 9.9407e-01-8.1058e-01-8.9784¢-02

9.9483e-01

9.9994¢-01 9.7488e-01 9.9975e-01-9.9979e-01 9.9979e-0t

9.9937e-01 9.4482e-01-9.9913e-01 9.9946e-01-9.9968e-0]

9.9968e-01-9.9981e-01 9.9975e-01-7.8143¢-01-1.1353e-02

9.9958e-01

-9.5308e-01-9.7285e-01-9.4745e-01 9.4793¢-01-9.4997e-01

-9.4442e-01-8.3595e-01 9.4234¢-01-9.4538e-01 9.4702e-01

-9.4656e-01 9.4828e-01-9.4744¢-01 8.5363e-01 2.7095e-01

-9.5032e-01

1.0(0)O4.00 9.7610e-01 9.9973¢-01-9.9974¢-01 9.9959e-01

9.9918e-01 9.4331e-01-9.9897e-01 9.9957e-01-9.9974¢-01

9.9970e-01-9.9972e-01 9.9969e-01-7.8513¢-01-1.4196e-02

9.9937e-01

9.7610e-01 1.0000e+00 9.7086e-01-9.7096e-01 9.7087e-01

9.6691e-01 8.6941e-01 -9.6530e-01 9.729,1¢-01 -9.7297e-01

9.7074e-01-9.7084¢-01 9.7077e--01-8.9989e-0]-2.0921e-01

9.688%-01

9.9973e-01 9.7086e-01 1.0000e+00-9.9999e-01 9.9979e-01

9.9980e-01 9.4872e-01-9.9975e-01 9.9967e-01-9.9982e-01

9.9999e-01 -9.9997e-01 9.9996e-01 -7.711 le-01 0.0000e+00

9.9973e-01

-9.9974¢-01-9.7096e-0I-9.9999e-01 1.0000e+00-9.9985e-01

-9.9981e-01-9.4877e-01 9.9974¢-01-9.9966e-01 9.9982e-01

-9.9998e-01 9.9999e-01-9.9998e-01 7.7128e-01 0.0000e+00

-9.9975e-0 1

9.9959e-01 9.7087e-01 9.9979e-01-9.9985e-01 1.0000e+00

9.9980e-01 9.5065e-01-9.9958e-01 9.9952e-01-9.9969e-01

9.9972e-01-9.9991e-01 9.9987e-01-7.7124¢-0t 0.0000e+00

9.9965e-01

I 1) 1.0000e+00 -7.1435e-01 -7.7317e-01

21) -7.7476e-01-7.6670e-01 7.7381e-01

31) 7.6653e-01 7.6609e-01-7.5886e-01

Row 12. Columns 1 Th_ 36

I) -1.6221¢-01 1.5939e-01 1.0225e-01

I1) -7.t435e-01 1.0000e+00 1.9580e-01

21) 1.7840e-01 1.7672¢-01-1.7734¢-01

31) -I.9090e-01-1.9001e-01 1.8765e-01

-7.5412e-01 5.4647¢-01-7.5237e-01-6.0711e-01-7.6648e-01 7.6607e-01-7.6582e-01

-7.7935e..01 -8.2077e-01 -7.7680e-0 ] -9.055 le-01 7.7955e-01 -7.6740e-01 7.6551 e-01

7.6684¢-01-5.9718e-01-7.6694¢.01 7.6661e-01-7.6683¢-01 2.5430e-01-6.4781e-01

-7.6493e-01 -7.5924¢-01 -7.6421e-01

1.6492e-01 5.0223¢-02

2.0415e-01 2.5665e-0 I

- ] .7494¢-01 -6.4138e-02

1.8719e-01 1.8867e-01

1.5987e-01-5.8122e-02 1.8253¢-01-1.8215e-01 1.8200e-01

1.9830e-01 3.9512e-01-2.0440e-01 1.7371e-01-1.7391e-01

1.8295e-01-1.8267e-01 1.8287e-01 4.7562e-01 9.0808e-01

1.886%-01

Table (5.6) - The Cross Orthogonality of the First Krylov Block of the EPS Radiator
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Row 13. Columns ! Thru 3_

l) -9.9941e-01 9.9931e-01

11) -7.7317e-01 1.9580e-01

21) 9.9864¢-01 9.9964e-01

31} -9.9989e..OI .9.9989e-01

Row 14. Columns I Thru 36

1) -9.9906¢-01 9.98%e-01

11) -7.7935e-01 2.0415e-O1

21) 9.9867e-01 9,9951e-01

31) -9.9974¢-01 -9.9973e-01

Row 15, Columns I Thin 36

1) -9.9289e-01 9.9282e-01

11) -8,2077e-01 2.566-%-01

21) 9,9533e-01 9.9503e-01

31) -9.945%-01 -9.9458e-01

Row 16. Columns I Thru 36

I) -9.9924¢-0! 9.9916e--01

11) -7.7680e-01 1.9830e--01

21) 9.9880e-01 9.9964¢-01

31) -9.9970e-01 -9.9971c-01

Row 17. Columns 1 Thru 36

1) -9.4312e-01 9.4310e-01

11) -9.0551e-01 3.9512e-01

21) 9.5281e-01 9.4963e-0 I

31) -9.4782e-01 -9.4779e-0 1

Rgw I_. Columnx I Thru 36

9,9328e-01 9.9947e-01-9.4547e-01

1.0000e+00 9.999-%-01 9.9574¢-01

-9.9866e-01-9,9951e-01 9.6604¢-01

9,993te-01 9,995%-01 9.9927e-01

9,9217e-01 9.991-%-01-9.4255e-01

9.9995e-01 1.0000e+00 9.9651e-01

-9,9867e-01-9.9939e-01 9,6377e-01

9.9903e-01 9.9971e-01 9.9899e-01

9.9933e-01

9,9993e-01

9.9987e -0 I

9.9982e-01

9.6749e-01 9.9989e-01-9.9990e-01 9.9975e-01

9,5135e-01-9.9995e-01 9,993-%-01-9.9955e-01

-9.998%-01 9,9987e-01-7.6210e-01 1.8510e-02

9.9898e-01 9.6537¢-01 9.9975e-01-9.9974¢-01 9,9960e-01

9.9995e-0[ 9.5402e-01-l,0000e+00 9.992-%-01-9,9941e-01

9.9974¢-01-9.997-%-01 9.9973e-01-7.5718e-01 2.8265e-02

9.9963e-01

9.8160e-01 9.9343e-01-9.2212e-01 9.9290e-01 9,483-%-01 9.9490e--01-9.9492e-01 9.9536e-01

9,9574¢-01 9.9651e-01 1.0000e+00 9.9660e-01 9,7569e-01-9.9650e-01 9.952-%-01-9,950-%-01

-9.951-%-01-9.9526¢-01 9.4543e-01 9,9477e-01-9.9518e-01 9.9500e-01-7,2508e-01 9.7575e-02

9.9220e-01 9.9431e-01 9.9210e-01 9.9424¢-01

9.9282e-01 9.9937e-01-9.4442e-01

9.9993e-01 9.9995e-01 9.9660e-01

-9.987%-01-9,995%-01 9.6528e-01

9,958.4e-01 9.9967e-01 9.9877e-01

9.2030e-01 9,4482e-01-8,3595e-01

9,513.%-01 9,5402e-01 9,7569e-01

-9.5217e-01-9.5072e-01 8.6322e-01

9.4127e-01 9,468-%-01 9.4106¢-01

1) 9,9905e-01-9.9895e-01-9.9210e-01-9.9913e-01 9.4234¢-01

11) 7.795-%-01 -2.0440e-01

21) -9.9868e-01 -9.9951e-0!

31) 9.9973e-01 9.9972e-01

Row 19. Columns 1 Thin 36

1) -9.9947e-OJ 9.9954.e-0J 9,932_-.01 9,9946e-01-9.4538e-0J

11) -7.6740e-01 1,7371e-01 9.993-%-01 9,9925e-01 9.9525e-01

21) 9.9970e-01 9.9994¢-01-9.9971e-01-9.9998e-01 9.710-%-01

31) -9,9897e-01-9,9900e-01 9,9790e-01 9,9911e-01 9,9781e-01

Rgw 20. Columns 1 Thru 36

l) 9.9967e-01-9.9971e-.01-9.938-%-01-9,9968e-01 9,4702e-01

9,9918e-01 9.6691e-01 9.9980e-01-9.9981e-01 9.9980e-01

1.00(X)e+00 9.5435e-01-9.9994¢-01 9.9946¢-01-9.9960e-01

9.997-%-01-9.9986¢-01 9,9981e-01-7,613-%-01 2.403%-02

9.9961e-,91

9,4331 e-01

9,5435e-01

9,4831 e -01

9,4686¢-01

8,6941e-01 9.4872e-01-9.4877e-01 9,506-%-01

1.000_+00-9,54tX_.-01 9.5099e-01-9,4993e-01

-9.4967e-01 9,4907e-01-6.0968e-01 2.821%-01

-9.9897e-01-9.6530e-01-9.9975e-01 9.9974¢-01-9.9958e-01

-9.9995e.01-I.0000e+00-9,9650e-01-9.9994¢-01-9.5400e-01 1,0000e+00-9.9925e-01 9,9940e-01

9.9869e-01 9,9939e-01-9.6370e-01-9.9974¢-01 9.9974¢-01-9.9973e-01 7.5704¢-01-2.8583e-02

-9.9902e-01 -9,9970e-01 -9.9899e-01 -9.9962e-01

9,9957e-0J

9.9946e-01

9.9966¢-01

9,988-%-01

9,7294.e-0.1 9.9967e-OJ-9.9966¢-.0.1 9,995.2e-.0J

9,5099e-01-9,992-%-01 1.0000e+00-9.9997e-01

-9.9967e-01 9.9966¢-01-7,7909e-01 0.00(X)e+00

-9.9974¢-01-9.7297e-01-9.9982e-01 9.9982e-01-9.9969e-01

11) 7.6551e-01 .1.7391e-01 -9,995-%-01 -9.9941e-01 -9.9505e-01 -9.9960e-01 -9.4993e-01 9.9940e-01 -9.9997e-01 1.0000e+(X)

21) -9.9951e-01-9.9998e-01 9.9953e-01 1,0000e+00-9.7124¢-01-9.9980e-01 9,9983e-01-9.9981e-01 7,7823e-01 0.0000e+00

31) 9.9927e-01 9.9930e-01-9.9834¢-01-9.9939e-01-9.9826¢,-01-9.9918e-01

Row 21. (_olumns I Thru 36

1) -9.9854¢-01 9.9867e..01 9,9044¢-01 9,9843e-01-9.3835e-01 9.9874¢-01 9.7127e-01 9.9902e-01-9.989-%-01 99856¢-01

l l) -7.7476¢-01 1,7840e-01 9.9864¢-01 9.9867¢-01 9.9533e-01 9.9880e-01 9.5281¢-01-9,9868e-01 9.9970e-01-9,9951e-01

21) 1.0000e-o00 9.9953e-01-I.0000e+00-9.9957e-01 9,6897e-01 9.9908e-01-9.9892e-01 9.9896e-01-7.7756e-01 2.0543e-02

31) -9.9797e-01-9,9799e-01 9.9670e-01 9,9818e-01 9.9663e-01 9.9774¢-01

Row 22. Columns 1 Thru 36

1) -9.9967e-01 9.9969e-0t 9,9359e-01 9,9965e-01-9.4610e-01

11) -7.6670e-01 1,7672e-01 9.9964¢-01 9.9951e-01 9.9503e-01

21) 9.9953e-01 1.0000e+00-9,995-%-01-9,9997e-01 9.7060e-.01

31) -9.9937e-01-9,993%-01 9.9854¢-01 9.9950e-.01 9.9846¢-01

RQW '_,3, (_qlumns I Thru 36

9,9972e-01 9.7230e-01 9.9988e-01-9.9987e-01 99967e-01

9,9964¢-01 9.4963e-01-9.9951e-01 9.9994e-01-9.9998e-01

9.9988e-0t-9.9986e-01 9.9986¢-01-7,7626¢-01 0.0000e.+(X)

9.9927e-01

t) 9.9860e-01-9.9872e-01-9.9057e-01-9.9848e-01 9.3865e-01-9.9879¢-01-9,7154e-01-9,990-%-01 9.9598e-01-9,9856¢-01

11) 7.7381e-01-1.7734¢-01-9.9866e-01-9.9867e-01-9.9515e-01-9.987%-01-9.5217e-01 9.986%-01-9,9971e-01 9.9953e-01

21) -1.0000e+00-9.995-%-01 1.0000e+00 9.9958e-01-9.6927e-01-9.9912e-01 9,9894e-01-9.9899e-01 7.7812e-01-1.9052e-02

31) 9.9801e-01 9.9802e-01 -9.9679e-01 -9,9823e-01 -9.9672e-01 -9.9779e-01

RQw 24_ (_91umns 1 Thru 36

1) 9.9959e-01-9.9964e-01-9,935%-01-9,9961e-01 9.4636e-01-9.9967e-01-9.7271e-01-9.9978e-01 9.997ge-01-9.9966e-01

11) 7.6684¢-01 -1,7494¢-01 .9,9951e-01 -9,993%-01 -9,9526¢-01 -9.995%-01 -9.5072e-01 9,9939e-01 .99998e-01 1.0000e+00

21) -9.9957e-01-9.9997e-01 9.9958e-01 1.0000e+00-9,7091e-01-9.9976¢-01 9.997%-01-9.9977¢-01 7.7785e-01 0.0000e+00

31) 9.9919e-01 9.9922e-01-9.9819e-01-9,9931e-01-9.9810e-01-9.9909e-01

Table (5.6)(Cont.) - The Cross Orthogonality of the First Krylov Block of the EPS Radiator
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Row 25. Columns I Thin 36

1) -9,7430e-01 9.7493¢-01 9.8418e-01

11) -5.9718e..01 -6,4138e-02 9.6604e-01

21) 9.6897e-01 9.7060e-01-9.6927e-01

31) -9.6730e-01-9.6753e-01 9.6765e-01

RQw 26, Columns 1 Thin 36

1) -9.9972e-01 9.9968e-01 9.9381e-01

ll) -7.6694e-01 1.8295e-01 9.9987e-01

21) 9.9908e-01 9.9988e-01-9.9912e-01

31) -9.9976e-01-9.9976e-01 9.9922e-01

9.7366¢-01-9.7639e-01 9.7481e-01 9.9978e-01 9.6940e-01-9.6951e-01 9.6944e-01

9.6377e-01 9.4543¢-01 9.6528e-01 8.6322e-01-9.6370e-01 9.7105e-01-9.7124e-01

-9.7091e-01 1.0000e+00 9.6926e-01 -9.6937e-01 9.6930e-01 -9,0022e-01 -2.2244¢-01

9.6825e-01 9.6734¢-01 9.6783¢-01

9.9968e-01-9.4656e-01 9.9970e-01 9.7074e-01 9.9999e-01-9.9998e-01 9.9972e-01

9.9974e-01 9,9477e-01 9.9975e-01 9.4831e-01-9.9974¢-01 9.9966e-01-9.9980e-01

-9.9976e-01 9.6926e-01 1.0000e+O0-9.9994e-01 9.9996e-01-7.7091e.-01 0.0000e+00

9.9984e-01 9.9917e-01 9.9968e-01

Rg, w 27. Columns I Thru 36

I) 9.9975¢-01 -9.9971e-01 -9.9433e-01 -9.9981e-01 9.4828e-01 -9.9972e-01

11) 7.6661e-01 -1.8267e-01 -9.9989e-01 -9.9975e-01 -9.9518e-01 -9.9986e-01

21) -9.9892e-01 -9.9986e-01

31) 9.9979e-0 [ 9.9981e-01

R9 w _8, (_olumns I Thru 36

1) -9.9973¢-01 9.9968e-01

11) -7.6683¢-01 1.8287¢-01

21) 9.9896e-01 9.9986e-01

31) -9,9977e-01 -9.9977e-01

Row 29. Columns 1 Thru 36

l) 7.8313¢-01 -7.8530e-01

I 1) 2.5430e-01 4.7562e-01

21) -7.7756e-01 -7.7626e-01

31) 7.636 le-01 7.6423e-01

Row 30. Columns 1 Thin

1) 1.3869e-02 - 1.5068e-02

9.9894e-01

-9,991 le-01

9.9979e-01 -9.6937e-01 -9.9994e-01

-9.9983¢-01 -9.9904e-01 -9.9974e--01

-9.7084e-01-9.9997e-01 9.9999e-01-9.9991e-01

-9.4967e-01 9,9974¢-01-9.9967e-01 9.9983e-01

1.0000e+00-9.9997e-01 7.7105e-01 0.0000e+00

9.9407e-01

9.9987e-01

-9.9899e-01

9,9912e-01

9.9975e-01-9.4744e-01 9.9969¢-01

9.9973¢-01 9.9500e-01 9.9981e-01

-9.9977e-01 9.6930e-01 9.9996e-01

9.9983¢-01 9.9906e-01 9.9970e-01

9.7077e-01 9.9996¢-01-9.9998e-01 9,9987e-01

9.4907e-01-9.9973¢-01 9.9966¢-01-9,9981e-01

-9.9997e-01 1.0000e+00-7.7095e-01 0.0000e+00

-8.1058e-01-7.8143¢-01 8.5363¢-01-7.8513¢-01

-7.6210¢-01 -7.5718e-01 -7.2508e-01 -7.6135e-01

7,7812e-01 7.7785e-01-9,0022e-01-7.7091e-01

-7.6291 e -01 -7.6626e-01 -7.6212e -01 -7.6457e-01

-8.9959e-01-7.7111e-01 7.7128e-01-7.7124e-01

-6.0968e-01 7.5704¢-01-7.7909e-01 7.7823e-01

7.7105e-01-7.7095¢-01 1.0000e.',,00 5.2942e-01

-8.9784e-02-1.1353¢-02 2.7095e-01-1.4196e-02-2.0921e-01 0.0000e+00 0.0000e+00 0.0000e+00

11) -6,4781e-01 9.0808e-01 1.8510e-02 2.8265e-02 9.7575e-02 2.4039e-02 2.8219e-01-2.8553¢-02 0.0000e+00 0,0(_0e+00

21) 2.0543e-02 0,0000e+00-1.9052e-02 0.00(Oe+_-2.2244e-01 0.0000e+00 0.0000e+00 0.0000e+00 5.2942e-01 1.0000e+00

ROW 31. Columns 1 Thru 36

1) 9.9951e-01-9.9937e-01-9.9442e-01-9.9956e-01 9.4900e-01-9.9937e-01-9.6844e-01-9,9979e-01 9.9981¢-01-9.9968¢-01

I1) 7.6653e-01-1.9090e-01-9.9989e-01-9.9974e-01-9.9459e-01-9.9970e-01-9.4782e-01 9.9973¢-01-9.9897e-01 9.9927e-01

21) -9.9797e-01-9.9937e-01 9.9801¢-01 9,9919e-01-9.6730e-01-9.9976e-01 9.9979e-01-9.9977e-01 7.6361e-01 0.0000e+00

31) 1.0000e+00 1.0000e+00-9.9970e-01-9.9998e-01-9.9966e-01-9.9999e-01

Row 32. Columns I Thru 36

1) 9,9954e-01-9.9941e-01-9.9452e-01-9.9959e-01 9.4928e-01-9.9940e-01-9.6868¢-01-9.9980e-01 9.9982e-01-9.9970e-01

ll) 7.6609e-01-l.9001e-01-9.9989e-01-9,9973e-01-9.9458e-01-9.9971e-01-9.477%-01 9.9972e-01-9.9900e-01 9.9930e-01

21) -9.9799e-01-9.993%-01 9.9802e-01 9.9922e-01-9.6753e-01-9.9976e-01 9.9981e-01-9.9977e-01 7.6423¢-01 0.0000e+00

31) 1.0000e+00 1.0000e+00-9.9969e-01-9.9998e-01-9,9%4e-01-9.9999e-01

Row 33, Columns I Thru 36

l) -9.9908e-01 9.9888e-01

ll) -7.5886e-01 1.8765e-01

21) 9.9670e-01 9.9854e-01

31) -9.9970e-01 -9,9969e-01

Rqw 34, Columns I Thru 36

1) -9.9963e-01. 9.9951e-01

11) -7.6493¢-01 1.8719e-01

21) 9.9818e-01 9.9950e-01

31) -9.9998¢-01 -9.9998e-01

Row 35. Columns I Thin 36

1) -9.9900e-01 9.9879¢-01

11) -7.5924¢-01 1.8867-'-01

21) 9.9663¢-01 9.9846e-01

31) -9.9966e-01 -9.9964e-01

]Rgw _. Columns I Tbm 36

1) -9.9952e-01 9.9938e-01

9.9475e-01 9.9901e-01-9.5089e-01 9.9886e-01 9.6838e.01 9.9922e-01-9.9921e-01 9.9885e-01

9.9931e-01 9.9903¢-01 9.9220e-01 9.9884e-01 9.4127e-01-9.9902e-01 9.9790e-01-9.9534e-01

-9.9679e-01-9.9819e-01 9.6765e-01 9,9922e-01-9,9911e-01 9.9912e-01-7.6291e-01 0.0000e+00

1,0000e+00 9.9971e-01 1.0000e+00 9.9975e-01

9.9450e-01

9.9989e-01

-9.9823e-01

9.9971 e-01

9.9963¢-01-9.4899¢-01 9.9951e-01 9.6942e-01 9.9986e-01-9.9987e-01 9.9967e-0]

9.9971¢-01 9,9431¢-01 9.9967e-01 9.4685e-01-9.9970e-01 9.9911e-01-9.9939¢-01

-9.9931e-01 9.6825e-01 9,9984e-01-9.9983¢-01 9.9983¢-01-7.6626e-01 0.0000e+00

1.0000e+00 9,9967e-01 9.9997e-01

9.9456e-01 9.9892e-01-9.5045e-01 9,9878e-01 9.6805e-01 9.9916e-01-9.9915e-01 9,9876e-01

9.9927e-01 9.9899(:-01 9.9210e-01 9.9877e-01 9.4106e-01-9.9899e-01 9.9781e-01-9.9826¢-01

-9.9672¢-01-9.9810e-01 9.6734e-01 9.9917e-01-9.9904e-01 9.9906e-01-7.6212e-01 0.0000e+00

1.0000e+00 9.9967e-01 1.0000e+00 9.9971e-01

9.9483¢-01 9.9958e-01-9.5032e-01 9.9937e-01 9,6889e-01 9.9973-'-01-9.9975e-01 9.9965e-01

11) -7.6421e-01 1.886%-01 9,9982e-01 9.9963¢-01 9.9424e-01 9.9961e-01 9.4686e-0]-9.9962e-01 9.9855e-01-9.9918e-01

21) 9.9774e-01 9.9927e-01-9.9779e-01-9.9909e-01 9.6783¢-01 9.9968e-01-9.9974e-01 9.9970e-01-7.6457e-01 0,0000e+00

31) -9.9999e-01-9.9999e-01 9.9975e-01 9.9997e-01 9.9971e-01 1.0000e4-00

Table (5.6)(Cont.) - The Cross Orthogonality of the First Krylov Block of the EPS Radiator
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Row 1, Columns 1 Thru 8

1.0000e+00 9.5350e-01-9.7551e-01 7.5250e-01-1.6221e-01-9.4312e-01 7.8313e-01 1.3869e-02

Row 2, Columns 1 Thru 8
9.5350e-01 1.0000e+00-9.7285e-01 5.4647e-01 5.0223e-02-8.3595e-01 8.5363e-01 2.7095e-01

Row 3, Columns 1 Thru 8

-9.755 le-01 -9.7285e-01 1.0000e+00 -6.0711 e-01 -5.8122e-02 8.6941e-01 -8.9989e-01 -2.0921e-01

Row 4, Columns I Thru 8

7.5250e-01 5.4647e-01 -6.0711e-01 1.0000e+O0 -7.1435e-01 -9.0551e-01 2.5430e-01 -6.4781e-01

Row 5, Columns I Thru 8
-1.6221e-01 5.0223e-02-5.8122e-02-7.1435e-01 1.0000e+00 3.9512e-01 4.7562e-01 9.0808e-01

Row 6, Columns 1 Thru 8

-9.4312e-01-8.3595e-01 8.6941e-01-9.0551e-01 3.9512e-01 1.0000e+00-6.0968e-01 2.8219e-01

Row 7, Columns I Thru 8

7.8313e-01 8.5363e-01-8.9989e-01 2.5430e-01 4.7562e-01-6.0968e-01 1.0000e+00 5.2942e-01

Row 8. Columns 1 Thru 8

1.3869e-02 2.7095e-01-2.0921e-01-6.4781e-01 9.0808e-01 2.8219e-01 5.2942e-01 1.0000e+00

Table (5.7) - The Cross Orthogonality of the First Krylov Block

of the EPS Radiator, After Block Filtering
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Modes

1st Bend

2nd Bend

3rd Bend

Finite

Element

.5464 Hz

3.415 Hz

9.522 Hz

Ritz

Vectors

.5464 Hz

3.415 Hz

9.610 Hz

Percent

Difference

0.%

0.%

.92 %

Normal

Modes

.5464 Hz

3.415 Hz

9.522 Hz

Percent

Difference

0.%

0.%

0.%

4th Bend 18.57 Hz 24.24 Hz 31. % 18.57 Hz 0. %

1st Tors 27.58 Hz 27.58 Hz 0. % 27.58 Hz 0. %

Table (5.8) - Comparison Between the Frequencies of a

Cantilevered Beam Obtained From Fixed Interface Component

Normal Modes, Ritz Vectors, and Finite Elements



91

Modes Finite Ritz Percent
Element Vectors Difference

1stBend .5464Hz .5464Hz 0. %

2nd Bend 3.415Hz 3.415Hz 0. %

3rdBend 9.522Hz 9.524Hz .02 %

4th Bend 18.57Hz 19.23Hz 3.6 %

1stTors 27.58Hz 27.58Hz 0. %

Table (5.9) - ComparisonBetweentheFrequenciesof a
CantileveredBeamObtainedFrom FreeInterfaceComponent

Ritz Vectors,andFinite Elements
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i

Modes Finite Ritz Percent

Element Vectors Difference

1st Rigid 0. Hz 0. Hz 0. %

2nd Rigid 0. Hz 0. Hz 0. %

3rdRigid

4thRigid

5thRigid

0. Hz 0. Hz 0. %

0. Hz 0. Hz 0. %

0. Hz 0. Hz 0. %

0. Hz 0. %6th Rigid 0. Hz

1st Bend 3.474 Hz 3.474 Hz 0. %

2nd Bend 9.549 Hz 9.549 Hz 0. %

3rd Bend

4th Bend

18.65 Hz 18.69 Hz .21%

30.70 Hz 33.15 Hz 8. %

Table (5.10) - Comparison Between the Frequencies of a

Free-Free Beam Obtained From Free Interface Component

Ritz Vectors, and Finite Elements
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VariousNormalizationMethods

Various
Orthogonalization
Methods

Cholesky/QR
Decomposition

Gram-Schmidt,
Reorthogonalize
with all vectors

Gram-Schmidt,
Reorthogonalize
with selected

Gram-Schmidt,
Reorthogonalize
usingmodified
Gram-Schmidt

Orthonormalized
wrt theEuclidean

Norm

97.0

103.9

116.0

Orthonormalized
wrt the Mass

Matrix, andall
previousblocks

140.9

379.2

409.1

461.0 3747.0

Orthonormalized

wrt the Mass

Matrix, previous

two blocks only

112.4

385.6

468.9

4196.9

Various Eigenvalue Extraction Methods

Normal

Eigenvalues

Lanczos

115.5

Modified Givens

5758.8

Inverse Power

6455.5

Table (5.11) - Comparisons of the Computer Time (seconds) Required

to Form a Component of the EPS Radiator Finite Element Model

(4000 DOF), Using Selected Orthonormalization Options
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VariousNormalizationMethods

Various
Orthogonalization
Methods

Cholesky/QR
Decomposition

Gram-Schmidt,
Reorthogonalize
with all vectors

Gram-Schmidt,
Reorthogonalize
with selected

Gram-Schmidt,
Reorthogonalize
using modified
Gram-Schmidt

Orthonormalized
wrt the Euclidean

Norm

323.2

341.6

348.5

Orthonormalized
wrt theMass

Matrix, andall
previousblocks

399.5

534.3

558.3

559.5 3062.5

Orthonormalized
wrt theMass

Matrix, previous
two blocks only

376.1

542.1

565.2

3095.3

VariousEigenvalueExtractionMethods

Normal
Eigenvalues

Lanczos

743.7

Modified Givens InversePower

Table (5.12) - Comparisonsof the ComputerTime Required
to Form a Componentof the CassiniSpacecraftFinite Element

Model (11,100DOF), Using SelectedOrthonormalizationOptions
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Figure (5.1) - SpaceStationElectricalPowerSystemDeployedRadiator
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Figure (5.2) - SpaceStationEPSRadiatorUndeformedFinite ElementModel
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"'<._,_. o° ",

Figure (5.3) - EPS Radiator First Normal Mode, Fixed Interface
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Figure (5.4) - EPSRadiatorSecondNormal Mode,Fixed Interface
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Figure (5.5) - EPSRadiatorThird Normal Mode,Fixed Interface
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Figure (5.6) - Cassini Spacecraft
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Figure (5.7) - CassiniSpacecraftFinite ElementModel
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(a) Initial Calculation

(b) After Gram-SchmidtOrthogonalization

Figure (5.8) - Fixed InterfaceRitz Vector,
Block One,Vector One
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(a) Initial Calculation

_//------------_ _

(b) After Gram-SchmidtOrthogonalization

Figure(5.9) - Fixed InterfaceRitz Vector,
Block One,VectorTwo
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(a) Initial Calculation

(b) After Gram-Schmidt Orthogonalization

Figure (5.10) - Fixed Interface Ritz Vector,

Block Two, Vector One
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(a) Initial Calculation

(b) After Gram-Schmidt Orthogonalization

Figure (5.11) - Fixed Interface Ritz Vector,
Block Two, Vector Two



Chapter 6

Targeted Shifting

6. I) Introduction:

Inverse operators have been widely used in a variety of eigenvalue extraction

routines. The use of inverse operators is commonly called sequence shifting. By

shifting the dominant frequency sought by an algorithm, an eigenvalue extraction

routine can locate missing eigenvalues within a specific frequency range. In Lanczos

eigenvalue extraction, the inverse operator shifts the dominant frequency of the Krylov

sequence to a range of frequency where missing eigenvalues are located. By doing

so, the number of eigenvalues beyond the range of interest is minimized while

insuring that interesting modes are calculated.

The utility made of the ability of the inverse operator to shift the dominant

frequency of the Krylov sequence is not limited to searching for missing eigenvalues.

This chapter presents shifting that is targeted to the frequency of the dominant applied

dynamic load vector, rather than to missing eigenvalues. By shifting the dominant

frequency sought by the Krylov sequence, static Ritz vectors which can contribute to

an accurate dynamic response prediction are generated. The use of the inverse

operator in this manner has been identified in this work as targeted shifting.

106
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6.2) Theory:

As discussed in section 2.5, an inverse operator can direct a solution to

particular frequency range. The problem discussed in section 2.5 was the computation

of selected eigenpairs of the generalized eigenvalue problem,

(K-_.M)x=O (6.1)

with L being the eigenvalues and x the eigenvectors, the matrix A of equation (2.46)

being re-written to the common structural dynamics usage of K. A system is created

using the operator

(K_oM)-IM (6.2)

which has the same eigenvectors as (6.1). The shifted system eigenvalues are

transformed to 1/(_. - o), with o being defined as the shift frequency. When the

inverse operator is applied the eigenvalue nearest cy becomes the dominant one and

the sequence will converge to the corresponding eigenvector. The cost for performing

the shift is the factorization of (K - oM )1.

If the selected shift frequency, 6, is coincidentally an exact eigenvalue, then

(K - cyM) 1 is, by definition, singular. To obtain a non-singular matrix the shift value

is merely altered by a small constant value, such as. 1, to move the shift away from

the eigenvalue frequency.
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To add an inverseoperatorto the static Ritz vector calculationthe Krylov

sequencepresentedin chapter2 mustbemodified. Severaldifferentinverseoperators

could be used. Some inverse operators,such as that defined by equation (6.2),

transformthe systemequationssothat theyproducetransformedeigenvalues,but the

producedeigenvectorsarenot transformed. Othersinverseoperatorstransformthe

systemequationssuchthatboththeeigenvaluesandeigenvectorsaretransformed.(In

eigenvalueextractionroutinesthis transformationnecessitatesa back transformation

to obtain a final solution.) The operatordefinedby equation(6.2) wasselectedfor

this work becausethisoperatordoesnot transformvectorsresultingfrom the Krylov

sequencewhen shifting is applied.

When this operatoris appliedto theKrylov sequencepresentedin Table(4.1)

andchapter2, equation(2.8),

_t

q.i = kii -1 m ii qj-I (2.8)

is revised to become

q_ = (kii- °m_) -1 mii qj-1 (6.3)

Note that if a shift frequency is defined as zero, then equation (6.3) becomes equation

(2.8). The standard Krylov sequence can be considered to be a shifted sequence with

the shift frequency permanently defined as zero.
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If the inverseoperatoris appliedto the equationusedto generatethe initial

block of Ritz vectors,equation(2.6)

ql = kii -1 ( m ii ¢_ ic+m ic)
(2.6)

would be revised to become

ql : ( kii - o m//) -1 mii ( m ii @ic+m ic) (6.4)

6.3) Illustrative Example:

A short numerical example is given to illustrate the effectiveness of shifting.

Consider a system with the following defining matrices,

and

K Lli]21 (6.5)

L°ilM = 1 (6.6)

0

In this example, a load, rather than the boundary flexibility matrix, will be used to

initiate the sequence. The initial load dependent static Ritz vector is defined by the

following equation

ql =K-IP (6.7)
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If p is defined as

p =[1 1 1] r (6.8)

then the normalized initial Ritz vector, ql, is

ql = [.408 .408 .816] r (6.9)

The Rayleigh quotient of a vector derived from a two matrix, or general

system, can be defined as

Pi-
(6.10)

When the vector used with equation (6.10) is an eigenvector, then the Rayleigh

quotient is the eigenvalue associated with that eigenvector. The square root of a

vector's Rayleigh quotient implies, as a eigenvalue does, a frequency at which the

vector is most likely to respond. The initial static Ritz vector, ql, has a Rayleigh

quotient of p = 2.857.

The eigenvalues of the system defined in equations (6.5) and (6.6) are .775,

2., and 3.225. The system eigenvectors, _, are

-.309 .707 .312]

.756 0.000 .764]-.617 -.707 .624

(6.11)
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Thecrossorthogonalityof thethird eigenvectorandthefirst Ritz vector, t_3Tql , is .948.

The initial static Ritz vector, produced by equation (6.8), is most numerically similar

to the third eigenvector, both by mode and by frequency.

The shifted initial load dependent static Ritz vector is defined by the following

ql = (K-oM) -1Mp

equation

(6.12)

Using the same force vector, p, defined by equation (6.8), and a shift with an arbitrary

frequency of 1.0, (an assumption being made that the force vector, p, has a dominant

frequency component of 1.0) the normalized initial Ritz vector, ql, is

ql = [0.000 .894 -.447] T (6.13)

The Rayleigh quotient of this vector is p = 1.199, relatively close to the shift value

of 1.0. The cross orthogonality of the first eigenvector and the first Ritz vector, _rq_,

is .952. The shifted initial static Ritz vector's frequency content is closer to a target

frequency than that of the vector (equation 6.9) produced without the shift. Rather

than resembling the third eigenvector of the system, the shifted initial Ritz vector

resembles the first eigenvector.

6.4) Targeted Shifting:

After considering the example presented in section 6.3, it is reasonable to

consider using the frequency content of an applied dynamic loading in the shift
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methodology. This canbeaccomplishedby determiningthefrequencycontentof the

applied dynamic load and using the dominant frequenciesas shift values. The

resultingshiftedstatic Ritz vectorswill bemore likely to accuratelypredict system

responsesthanstatic Ritz vectorswhich havea frequencycontentfar removedfrom

that of the applieddynamic load. In addition, it is also reasonableto augmentthe

static Ritz vectorsderived from the boundaryflexibility matriceswith static load

dependentRitz vectors.

Eachseparatetargetedshift thatis performedentailsthe computationcost of

decomposing (kii - (rmii)-_into the upperandlower triangularfactorsU and L. In a

large finite element model the computational cost to perform this factorization can be

significant and over-aggressive shifting can make the computational cost of this

procedure exceed that of the orthonormalization and make the static Ritz vector

calculation inefficient. As a result it is beneficial to minimize the amount of shifts in

the overall targeted shifting strategy. The overall targeted shifting strategy will

discussed in the next section.

Since relatively few frequencies can be targeted in a computationally efficient

shift strategy, the method chosen to select frequencies important to the dynamic

response should seek, at most, several dominant frequencies. The absolute magnitude

of any particular frequency is unimportant since the relative magnitude of a frequency

is used to identify the dominant frequencies. The choice of which method is used to

determine the frequency content of the time domain dynamic loading can be made
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somewhatsubjectively. Most analytical procedures which transform a time domain

response into the frequency domain, such as calculating a power spectral density, or

a frequency response function, etc. would be sufficient for identifying several

dominant frequencies. Alternately, if frequency information is available describing the

dynamic environment from non-analytical experience, then that information can also

easily be used. A shift can also easily be targeted to test derived frequency

information describing the structure itself. There is, of course, a possibility in some

applications, due to the nature of the dynamic excitation, that no dominant frequencies

can be identified. In those circumstances, the unshifted Krylov sequence is sufficient.

Static Ritz vectors derived from the spatial distribution of the applied dynamic

load, in conjunction with targeted shifting, can augment the static Ritz vectors derived

from the boundary flexibility matrices. A load dependent static Ritz vector may be

calculated from a dynamic load by using the spatial distribution of the dynamic load

at a single time step to create a representative static load. Selecting a time step where

the applied dynamic load, at a particular node, is at a maximum, is one possible

criteria. Consideration should be given, in the time step selection, to the dominant

frequency chosen for shifting. Another possible method for creating a representative

static load derived from the applied dynamic load would be to, determine the

maximum applied load over all time steps for each node, and from these maximums

synthesize a single static force vector. This representative static vector may have no

physical relation to the dynamic spatial characteristics of the applied loading, and the



114

resultingstatic Ritz vectormaynot resemblearesponseto dynamicexcitation. Once

a representativestaticloadhasbeencreated,staticRitz vectorsmay becalculatedby

using equation (6.12) with the selecteddominantfrequency. This load dependent

static Ritz vector is appendedto the vectorscalculatedby the algorithm given in

Tables(4.1) and (4.2).

6.5) Shift Strategy:

A definite theory does not exist which describes an optimal ordering and value

of shifts in Krylov sequence methodologies. In Lanczos eigenvalue extraction a fairly

complicated heuristic approach, which is successful in extracting eigenvalues, has been

developed _3. That particular strategy has limited applicability to the creation of

boundary flexibility method static Ritz vectors. As a result, an alternate heuristic

strategy has been developed specifically to create accurate static Ritz vectors as early

in the Krylov sequence as possible.

The new shift strategy for static Ritz vectors is introduced as follows. No shift

(or equivalently, a shift of zero) is applied to the initial block of vectors. The

representative static load, derived from applied the dynamic loading, is also not

applied to calculate the initial block. Therefore, equation (2.6), as previously

presented, is used to generate the initial block of Ritz vectors

ql = k ii -1 ( m ii ¢ ic+m ic) (2.6)
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The non-zeroshift equation,(6.4),is notusedin thecomputerimplementationof this

work. Theinitial zeroshift is performedbecauseabasicsetof vectorstargetedto the

lowest frequenciesis desired.Thesevectorsaredesiredbecause,with only a limited

amount of shifts targetingthe severalselecteddominant frequencies,they describe

other importantdynamiccharacteristicsnot in thefrequencyspectrumof the targeted

shifts.

Two selecteddominantfrequenciesareallowed,andacutoff frequencyis also

used as a shift frequency,for a total of three non-zero targetedshifts. When

approximatelyonequarterof thetotal requiredvectorshavebeencalculated(thenext

chapterpresentsamethodto determinethis value)ashift targetedto the first selected

frequencyis performed. At this shift therepresentativestaticload,derivedfrom the

applied dynamicloading,is also usedby appendingit to the previousvector block.

The resultingmodifiedKrylov sequenceequation(6.3) becomes

q_=(kii-°_mii)-lmii[ qj-1 P_ ] (6.14)

with the addition of the representative static load, Pk, and with the subscript k

indicating the shift number, initially k = 1. The vector block, qT, will have one more

column in it than the vector block, qj-l, due to the augmentation of qj-t with the

representative static load, Pk. Subsequent to the block increment, j, at which the shift

is applied, equation (6.3) is used to calculate additional vector blocks. When

approximately one half of the total required vectors have been calculated a second
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shift, k = 2, is applied with the second selected target frequency. The third shift is

applied when approximately three quarters of the vectors required have been

generated. The frequency used for the shift is a user defined cutoff frequency which

will be discussed in the next chapter.

This strategy was developed through trial and error and is as a result heuristic.

There may be other strategies which would be successful at creating a set of static

Ritz vectors which accurately represent a substructure. The effectiveness of the

presented strategy will not be demonstrated until chapter 8, after a sequence

termination methodology has also been presented.

6.6) Applied Dynamic Loading of Example Structural Models:

Several examples applied to the structural examples given in chapter 5 are

presented. For the beam example the time domain loading is shown in Figure (6.1).

The response spectrum of this time domain load is shown in Figure (6.2). The

dominant frequency selected is the frequency where the response spectrum reaches it's

peak, at .546 HZ. Because the time domain dynamic load is a rectangular impulse,

this frequency is equal to the inverse of twice the impulse width. The dynamic

loading is applied to a single node, the end point. As a result, the maximum spatial

load for the structure is the maximum applied dynamic load at that node and a

representative static load is easily created.

For the EPS Radiator the spatial distribution of the dynamic loading is the

same at every time step that the load is applied. As a result, all choices for an
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appropriatetime stepfrom which to derivea representativestaticload areidentical.

The load is appliedin a seriesof rectangularimpulsesasshownin Figure(6.3). The

responsespectrumof this applieddynamicload is shownin Figure (6.4). The peak

of the responsespectrum,at a frequencyof approximately5 HZ, is a result of the

pulsewidth of .08secof the applieddynamicload. This applieddynamicloadingis

derivedfrom aplumeimpingementloadingevent. Plumeimpingementloadingoccurs

when the spaceshuttle approachesthe spacestation,directing it's reactioncontrol

systemjets toward the station. It is the critical loadingeventfor the spacestation

structure in it's on-orbit configuration. The specific loadingcaseshownin Figure

(6.3) is a result of the shuttletranslatingin yaw alongthe main stationaxis.

All Cassini spacecraftloading comesthrough the spacecraft/launchvehicle

interface. As aresult,theboundaryflexibility vectorsarethe only availableloading

vectors. (A separateapplieddynamicloadvectordoesnotexist.) Figures(6.5),(6.6),

and (6.7) show the interface accelerationfor a lifloff loading event in the three

translationaldirections. Responsespectraof this inertialoadingareshownin Figures

(6.8), (6.9), and(6.10). Dominantfrequenciesof 5 HZ and 13HZ wereselectedfor

the two targetedshifts. The 13HZ frequencywasderivedfrom the pitch and yaw

excitation responsespectrumand the 5 HZ frequency was selectedfrom the

longitudinalexcitationresponsespectrum.No representativestaticloadwasappended,

becauseof the lack of a spatialdistribution for the applieddynamicload.
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Chapter 7

Krylov Sequence Termination Techniques

7.1) Introduction:

Determining when a sufficient number of static Ritz vectors have been

calculated is a problem which all static Ritz vector methods, including the boundary

flexibility method, share. When enough static Ritz vectors have been calculated to

accurately represent the dynamics of the given finite element model the Krylov

sequence can be terminated. A heuristic method for sequence termination has been

developed which is based, not on rigorous mathematics, but on the observed properties

of load dependent and boundary flexibility static Ritz vector creation.

A mathematically rigorous basis for judging when the sequence can be

terminated was extensively sought for, both in the literature and by analytical

investigation. It is possible that such a solution exists, however, a rigorous solution

was neither located nor could be created here. It is also possible that a mathematically

rigorous sequence termination methodology, which would be independent of physical

knowledge of typical structural dynamic systems (this knowledge was used to create

the heuristic method presented in this chapter), cannot be created.

The mathematically rigorous solution sought was analogous to modal

truncation. Modal truncation, based upon an eigenvalue cutoff, is the most popular

basis for determining if a sufficient number of normal eigenvectors have been

calculated. Static Ritz vectors do not have an eigenvalue with which to associate a

128
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truncationlimit, but theydo havea Rayleighvalue,aspresentedin chapter6. Using

Rayleighvaluesasapartialsubstitutefor eigenvalueswasexploredandwasfound to

not be practical.

7.2) Error Criteria and Effective Mass:

Several error criteria have been proposed which truncate the Krylov sequence

when a somewhat arbitrary variable reaches a arbitrary value. These proposed criteria

were briefly described in chapter 2. Most of the proposed termination criteria are

applicable only to load dependent static Ritz vectors, with a goal of obtaining an

accurate solution to the given static problem. Error criteria which are completely

aimed toward the solution of static problems have a limited direct utility in their

application to dynamic substructuring and boundary flexibility static Ritz vectors.

The single proposed error criteria for Krylov sequence termination which is

directed to dynamic problems is that proposed by Yiu and Landress 3°. This criteria

is based on a parameter, effective mass, commonly used in structural dynamics for the

identification of globally important normal eigenvectors of a structure. Effective mass

is a measure of the amount of the total structural mass represented in each individual

eigenvector. Effective mass is calculated as follows, beginning with an intermediate

matrix, MER, being defined as

Mej_ = OrMO _ (7.1)
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where• is thematrix of eigenvectors,andORBis therigid bodytransformationmatrix

of thestructure. Eachterm within theresultingmatrix of equation(7.1) is squaredto

form the effectivemassof eacheigenvector.

Effective Mass = < Me, s > 2 (7.2)

Note that eigenvalues are not used in the effective mass calculation, allowing static

Ritz vectors to directly replace the eigenvectors in equation (7.1). Each eigenvector

has a total of six effective mass values, three for the translations and three for the

rotations. The individual effective mass terms of the eigenvectors can, separately in

each translation and rotation coordinate, be summed and the sum can be compared to

the rigid body mass of the structure. The percentage of mass represented by

eigenvectors, in each direction, is referred to as the total effective mass.

Yiu and Landress proposed that the effective mass calculation can be made

using static Ritz vectors, and that when the total effective mass reaches an arbitrary

percentage, the sequence can be terminated. The recommended arbitrary percentage

was a minimum of 90% total effective mass, which is consistent with standard

aerospace practice when using normal eigenvectors. In standard aerospace practice

this cutoff value is used to determine if the important dynamics of a structure has been

test verified, and in some cases even a greater percentage than 90% is specified.

The primary assumption made when using total effective mass as an error

criteria is that, when enough vectors have been calculated to achieve the selected
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arbitrary percentageof representedmass, an accuratesolution is guaranteed.

Engineeringexperiencehasdemonstratedthat if thispercentageis setat ahighenough

value an accuratedynamic solution will often be possible. However, usually an

accuratesolutionis possiblewith far fewervectorsthanthe amountrequiredto reach

the cutoff value. The effective massof the normal eigenvectors,from the beam

examplemodelpresentedin chapter5, is shownin Table (7.I). The effectivemass

of the normal eigenvectors,from the EPS Radiatorand the Cassini finite element

models,is shownin appendixA. Thesearetypical effectivemassresultsfor typical

finite elementmodels. The total effective massof thesemodelsdoesnot converge

monotonically,nor doesit reachanyparticularpercentagewithin thefrequencyrange

of interest. Table (7.1)demonstratesthat,for thetorsionalrotation(R2) of thebeam

model, eigenvectorswith eigenvaluesup to 150HZ yield a total effective massof

76.7%. The contributionof the 22ndmodeat 133.73HZ wasrequiredto bring the

axial translation(T2) total effectivemassabove90%. Eigenvectorswith eigenvalues

in this frequencyrangearenot requiredto allow anaccuratedynamicsolution for the

excitationdescribedin chapter6. Therectangularimpulseexcitationhasarelatively

broadfrequencyspectrum,andexcitationat aparticularhigh frequencywould require

eigenvectorsin that rangefor an accuratesolution,but in any casea requiredtotal

effectivemassof 90% is arbitrary.

For the EPS Radiatormodel, thereare 175 modesbelow 140 HZ. These

modesyield a total effectivemassof 78.1%for axial translationand75.6%for out-
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of-planetranslation. Thein-planerotationaltotal effectivemassfor this setof modes

is 75.7%. If thedesiredtotal effectivemasswassetat a valueof 90%,hundredsof

vectors would be generated,but most are not requiredfor an accuratedynamic

solution, at frequenciesof interest in loads calculation. The Cassinimodel total

effective mass reaches90% much quicker than the examplebeam and the EPS

Radiator. Evenhere,if thedesiredvalue is sethigherthan90%,manyunnecessarily

vectorsmight be calculated. In conclusion,effectivemass,while a usefultool, was

investigatedbut wasnot implementedin this work. Othersimilar error criteria were

also found to not exhibit rapid, monotonicor well behavedconvergence.

7.3) Modal Density Truncation:

A new method has been developed that is based upon the density of the modal

space in a finite element model and the observation that the most dynamically

significant static Ritz vectors are generated near the beginning of the Krylov sequence.

This method was developed from the observation that almost all of the boundary

flexibility static Ritz vectors calculated early in the Krylov sequence are required to

obtain an accurate solution to the dynamic response problem. This includes static Ritz

vectors with Rayleigh values which are high relative to the frequency range of interest,

which might erroneously imply relatively low importance to dynamic response

prediction. It was also observed, in general, for the test examples utilized and from

the current literature, that accurate dynamic response predictions are possible with
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fewer load or boundary flexibility derived static Ritz vectors than with normal

eigenvectors.

Krylov sequenceterminationusingmodaldensitytruncationcanbe described

in detail asfollows. First, a cutoff frequencyis definedby the user. This frequency

shouldbebaseduponthedynamicrangeof interestandthefrequencyspectrumof the

forcing function. Next, the numberof normaleigenvectorswith eigenvaluesbelow

the cutoff frequencyis determined,which is referredto hereasthe modal density.

The actual eigenvectorsand eigenvaluesof the model are not required,just their

number. The Krylov sequenceis then initiatedandwhenthe numberof static Ritz

vectorscreatedis equalto afractionof themodaldensity,thesequenceis terminated

andthe componentis formed. A valuefor this fractionhasbeendeterminedby trial

and error. The effectivenessof this sequencetermination strategy will be

demonstratedin the next chapter.

Modal densitytruncationis not mathematicallyrigorous,but it is practical.

It is effectivebecausethe orderof thesystem,within thefrequencyrangeof interest,

is relatedto thenumberof staticRitz whichareneededto representthis model. This

algorithm is simple, and does not pursueunobtainablearbitrary parametervalues,

which can be the casewhenusingerror functions. The computationalcost of this

method is the factorizationof the massand stiffnessmatrices,shifted to the cutoff

frequency. The factorizationfor determiningthe modal densitycanbe reusedas a
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shift in the Krylov sequence,targetingstaticRitz vectors near the cutoff frequency

at no additional computational cost.

7.4) Determination of Modal Density and Truncation:

A method, called spectrum slicing, for determining the number of eigenvalues

in a system, below a certain value, was presented in section 2.6. Equation (2.48)

from that section, has been rewritten below in a form consistent with the equations in

Tables (4.1) and (4.2). The triangular factorization of the matrices kii and m_, shifted

to a cutoff value o c, is calculated

( k_ - a,:m u ) = LDL r (7.3)

where t_c is calculated from the user defined cutoff frequency, by

oc = ( 2_fc )2 (7.4)

Equation (2.49) can then rewritten as

v (A- acl) = v (k e- ocmu)=v(D) (7.5)

where v is number of negative eigenvalues and A = diag (_._ ,L 2 , ... , L, ). The

number of negative elements of D is equal to the number of eigenvalues, n c , of the

matrices ki_ and m_i, which are less than t_c.

The Krylov sequence is continued until the total number of calculated static

Ritz vectors, here defined as nr, is greater than the number of eigenvalues below crc,
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n c, multiplied by the fraction _. The fraction _ was established by trial and error.

Writing the termination logic in the form of the sub-indices from the equations of

Tables (4.1) and (4.2) yields

if n r > _ n c, then j = l (7.6)

All calculated static Ritz vectors, n_, are retained for subsequent dynamic analysis.

The boundary flexibility algorithm, with targeted shifting and modal density truncation

included, and numerical examples will be presented in the next chapter.
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Mode
No.

Freq.
(Hz)

1 0.55
2 0.55
3 3.41
4 3.41
5 9.52
6 9.52
7 18.57
8 18.57
9 27.58

10 30.53
11 30.53
12 45.41
13 45.41
14 63.18
15 63.18
16 81.90
17 83.59
18 83.59
19 84.64
20 104.41
21 104.41
22 133.73

Effective Masses (%)
T1 T2 T3 R1 R2 R3

0.0 0.0 61.3 97.0 0.0 0.0
61.3 0.0 0.0 0.0 0.0 97.0
18.1 0.0 0.8 0.1 0.0 2.4
0.8 0.0 18.1 2.4 0.0 0.1
2.8 0.0 3.7 0.2 0.0 0.1
3.7 0.0 2.8 0.1 0.0 0.2
3.2 0.0 0.1 0.0 0.0 0.1
0.1 0.0 3.2 0.1 0.0 0.0
0.0 80.6 0.0 0.0 0.0 0.0
2.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 2.0 0.0 0.0 0.0
1.3 0.0 0.1 0.0 0.0 0.0
0.1 0.0 1.3 0.0 0.0 0.0
0.7 0.0 0.3 0.0 0.0 0.0
0.3 0.0 0.7 0.0 0.0 0.0
0.0 8.6 0.0 0.0 0.0 0.0
0.4 0.0 0.3 0.0 0.0 0.0
0.3 0.0 0.4 0.0 0.0 0.0
0.0 0.0 0.0 0.0 76.7 0.0
0.3 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.3 0.0 0.0 0.0
0.0 2.8 0.0 0.0 0.0 0.0

Total Effective Mass(%)
T1 T2 T3 R1 R2

95.4 92.1 95.4 100.0 76.7
R3

100.0

Table(7.1) - BeamFinite ElementModel EffectiveMasses



Chapter 8

Numerical Examples of Targeted Shifting and Modal Density Truncation

8.1) Algorithm with Targeted Shifting and Modal Density Truncation:

The complete static Ritz vector, boundary flexibility algorithm, with targeted

shifting and modal density truncation included, is shown in Table (8.1). This

algorithm was extended from that presented in chapter 4, which included block

filtering and Cholesky/QR orthonormalization. Only the revised boundary flexibility

algorithm for euclidean vector orthonormalization is presented in this chapter, because

there is no fundamental difference in the application of targeted shifting and modal

density truncation to the various orthonormalization options presented in chapter 4.

8.2) Numerical Results and the Determination of the Fraction _g:

Three sets of time response problems were performed for the three example

models described in chapter 5 using the applied loading described in chapter 6. These

direct transient response problems were all performed using dynamically reduced

models, a structural damping ration of 2%, with the beam example and the EPS

Radiator having a fixed interface. The Cassini model was excited using enforced

acceleration on a seismic mass. Two comparison cases for each model were generated

using eigenvectors, the first using a modal truncation frequency greater than the

dynamic range of interest, and the second using a frequency cutoff at the frequency

range of interest. The beam example cutoff was 250 HZ for the high frequencies and

100 HZ for the representative frequencies. The EPS Radiator and the Cassini cutoff
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frequencieswere 150HZ for the high frequenciesand60 HZ for the representative

frequencies.Threetimeresponseproblems,usingthreedifferentvaluesfor thefraction

gt = 1.0, .5 and .25, for eachexamplemodelcreatedwith static Ritz vectors,were

performed.

A selectedsetof physicalaccelerationsandloadsfor eachof thesemodelswas

recovered. Table (8.2) shows the ratios of the minimum and maximum peak

responsesof thebeamexample,formulatedusingtheoptionsdiscussedabove,to the

prediction usingthehigh frequencycutoff eigenvaluemodel. Tables(8.3) and(8.4)

presentsimilar tablesfor theEPSRadiatorandthe Cassinimodel transientsolutions.

There is no guaranteethat the high frequencycutoff eigenvaluemodel representsa

completelyconvergedsolution. The cutoff valueswere selectedby multiplying the

frequencyat thecutoff of the dynamicrangeof interestby 2.5,and,consideringthe

large sizeof the Cassini and the EPSRadiatormodels,this cutoff produceda size

dynamicmodel for which a transientsolutioncould still convenientlybeobtained.

Severalobservationscan be madeof the beamexampleratios presentedin

Table(8.2). First, in thecaseof theaxial tip acceleration,which is dependenton high

frequency beam dynamics, the _ = 1.0 Ritz vector responsepredicteda more

completesolution thandid the eigenvectorresponse. Figures(8.1) and (8.2) show

axial tip accelerationtime historyplotspredictedby the250Hzcutoff eigenvectorand

the _ = 1.0Ritz vector models. The ratios for the _ = .50 andthe _ = .25 beam

examplesare identical. This is becausethe truncationcriteria algorithm produced
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identical representations.Thereareso few eigenvectorsin the frequencyrangeof

interestthat,afterthe initial two vectorblocksarecalculated,therearealreadyenough

vectorsto satisfythetruncationcriteria. As a result, no more vectors were calculated

for the gt = .50 beam example than were calculated for the g = .25 beam example,

and targeted shifting and the representative static load is not utilized for either of these

two cases. Not utilizing targeted shifting and a representative static load vector

partially explain the relatively low response predictions of the _ = .50 and the _ =

.25 cases. The lateral tip acceleration time history for the _ = 1.0 case is illustrated

in Figure (8.3), and the base bending moment for the same case is illustrated in Figure

(8.4). The time histories of the other cases are not included because they are

essentially identical.

Table (8.3) presents the time response ratios generated using the EPS Radiator

model. All the results from the various cases are reasonably consistent with the 150

Hz frequency cutoff case. There begins to be some divergence from the 150 Hz case

in the responses generated using the _ = .25 model. This would suggest that a

fraction value of _ = .50 might be appropriate for accurate, but low computational

cost, response predictions. In general, the responses predicted using the _ = 1.0 Ritz

vector component is a marginally closer match to the high frequency cutoff case than

the 60 Hz eigenvector model.

Figures (8.5), (8.6), (8.7), and (8.8) present the time response of the X

acceleration, the Z acceleration, and the two bending moments, for the _ = 1.0 case.
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As in the beamexample,thetime historiesplotsof theEPSRadiatorfrom thevarious

casesarevirtually identical. Examiningthe X accelerationtime historyexplainsthe

somewhatlower ratiosobtainedfor the _ = .50 and the_ = .25 maximum values

comparisons. Theminimum valueis muchgreaterthan the maximumvalue,which

representsa relatively small overshoot,and the ratio of the maximumsrepresenta

comparisonof relativelysmall values.

Table(8.4)presentstheratiosof thetime responsesof theCassinimodelusing

various _'s, comparedto the 150 Hz cutoff eigenvectorcomponent. Thereis more

divergencein theresultsof thevariouscasesusingtheCassinimodelthanwasin the

previouslydiscussedmodels. It wasmoredifficult for thestaticRitz vectorsto match

appendageaccelerationsthan other responses.Onceagain,the resultssuggestthat

fraction value of approximately _ = .50 might be the appropriatechoice for

reasonablyaccurateresponsepredictions. The High Gain AntennaStrut response

predictionsof the 60Hz cutoff eigenvectorcomponentindicatethat, for thiselement,

the 60 Hz cutoff wastoo low. The Ritz vector models,whosevectorsize is based

uponthenumberof vectorsin the60Hzmodel,werealsounableto accuratelypredict

thesestrut loads. H6wever,for the elementforcesin themainbodystringer,theRitz

vectors were able to obtain more accurateresponsepredictionsthan the 60 Hz

eigenvectorcomponent. In conclusion,the useof a fractionvalueof _ = .50 may

not provide enoughRitz vectors for accurateresponsepredictionsif the frequency

cutoff of interestselectedexcludesimportantdynamiceffects.
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Figures(8.9), (8.10),(8.11),and(8.12)presentthetime responseof theX, Y,

and Z acceleration,andthe strut axial load, for the _t = 1.0case. The ratiosof the

maximumvaluesof the accelerationsin the Z directionwerenot presentedin Table

(8.4). An examinationof Figure(8.11), the Z directionacceleration,will showthat

themaximumvalueoccursnearthe initial timestepandit's valueis nearzero. Ratios

of thesesmallresponsevalueswasnotmeaningfulandwerenotcalculated.Appendix

B containstheminimum andmaximumresponsesof all themodelsandcases,and it

was from this data that Tables(8.2), (8.3), and(8.4) weregenerated.
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After the assemblyof the component mass, m, and stiffness, k, matrices:

1) Modal Density Calculation

( kii - Oc mu) = LcO, L r

o c = oc +. 1

v (D) = nc

=L,U,

[shift value is calculated from user

defined cutoff frequency, fc]

[decompose shifted matrices]

[if and only if (kii - _emii) is singular]

[count the eigenvalues below oc]

2) Initialization

_ic = -kii -1 kic

ql* = k ii-l ( m ii • ic+m ic)

[create boundary flexibility matrix, lq.i

and lq.c were defined in equation (2.3)]

[create the initial block]

[For a free interface component, (If the component has rigid body modes then

the elastic flexibility matrix, g,, defined by (2.35) through (2.39) is used):

gcc] where k -1
ga [g "

q_ =g m g,_

3a) Filtering of Initial Block

q_* = ql* [<d/ag(ql* rql*) >cc ]-II2

LE = ql r ql**

[boundary flexibility matrix]

[create the initial block]]

[normalization]

[cross orthogonality]

Table (8.1) - Revised Boundary Flexibility Algorithm

With Targeted Shifting and Modal Density Truncation
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3a) (Continued)Filtering of Initial Block

If (< II£_ll.>c) _ e, than dependent

ql -" qDEP

3b)

L_ = ql*** r ql***

[partition into lower triangular]

[infinity norm of each vector]

[partition out dependent vectors]

Orthonormalization of the Initial Block

[BrB matrix product]

L*e = RTR

q_ ***RT = qx

[Cholesky factor decomposition]

[Solve by forward substitution]

4) For Blocks j = 2,3 ..... I, until n r > _ n c

4a) Set Shift Variables, Based on Count of n r

Ifn r< --,* nc thenk = O, o k = 0 [no shift]
4

n c 1

Ifn r> _,thenk = 1 , o k = or1, o k = -_o c4
[use or_, if defined]

n c 2

If nr > _, then k = 2 , o t = or2, o k = -_o c2
[use Or_,, if defined]

3,n c = [reuse L c and Uc from
If n r > _ then k = 3 o k o c

4 '

density calculation]

modal

Table (8.1) (Continued) - Revised Boundary Flexibility Algorithm

With Targeted Shifting and Modal Density Truncation



4b) Vector CalculationandFiltering

(k,,- o m.) --L, G

O k = O k + .l

Ls Us q_ = nliiqj_ 1

L, G = m. tqj_lpkl

q_* = qy*[<diag(qj* r qj,)>cc]-ll2

LE = qj..rqj..

If (< IILEIl.> _) > e, than dependent

q;* " [ q;** qoee ]

4c) Orthonormalization

L*E = z,j ql,jq ***T_ ***

L E = RrR

q_,j ***Rr = ql,j

columns( ql,j ) = n_

5) When rt r
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[if k = 3, then L s = L c and U_ = U_]

[if and only if (kii - _mii ) is singular]

[create new vector block, unless k = 1]

[create new vector block, if k = 1 ]

[normalization]

[cross orthogonality]

[partition into lower triangular]

[infinity norm of each vector]

[partition out dependent vectors]

[BrB matrix product]

[Cholesky factor decomposition]

[solve by forward substitution]

[count total calculated vectors]

> _ n c, Transform System to Form Component

Table (8.1) (Continued) - Revised Boundary Flexibility Algorithm

With Targeted Shifting and Modal Density Truncation



145

Eigen- 100Hz Ritz - _ = 1.0 Ritz - _ = .50 Ritz - gt = .25

Min [Max MiniMax MiniMax MiniMax

Tip Acceleration

Lat 1.00 1.00 1.00 1.00 .88 .85 .88 .85

Axial 0.87 0.89 1.11 1.13 .85 .85 .85 .85

ElementForcesat theBaseof the Beam

M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

V 1.00 1.00 1.00 1.00 .99 1.00 .99 1.00

Table (8.2) - Ratiosof Responsesof the BeamExampleModel Using Various
Representationsto the 250 HZ Cutoff EigenvectorRepresentationResponses

Eigen- 60 Hz Ritz - gt = 1.0 Ritz - _ = .50 Ritz - _ = .25

Min Max Min Max Min Max Min Max

Tip Acceleration

X 1.00 1.01 1.00 .98 .97 .88 .97 .87

Y 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Z 1.00 1.01 .99 .99 .98 1.02 .97 1.00

ElementForcesat the Baseof the ScissorsBeam

M1 1.02 1.01 1.01 1.01 1.00 1.00 1.01 1.01

M2 1.02 1.02 1.00 1.01 1.02 1.04 1.07 1.11

V 1.02 1.02 1.01 1.00 1.04 1.02 1.11 1.07

P 1.02 1.00 1.00 1.00 1.02 1.00 1.12 1.10

T 1.02 1.01 1.01 1.01 1.00 1.00 1.01 1.01

Table(8.3) - Ratiosof Responsesof the EPSRadiatorModel UsingVarious
Representationsto the 150HZ Cutoff EigenvectorRepresentationResponses
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Eigen - 60 Hz Ritz - _g= 1.0 Ritz - _g= .50 Ritz - _g= .25

Min Max Min Max Min Max Min Max

Acceler_ion _ theOxidizer Tank cg

X 1.07 1.03 1.06 1.20 .77 .77

Y .97 1.02 .97 .99 .96 1.09

1.02 .93 .92Z

1.00 1.00

1.00 1.00

1.00

Accelerationat the Probecg

X 1.00 1.00 1.00 .98 1.16 1.07 1.03 .96

Y 1.00 1.00 .98 1.00 .97 1.01 .97 .92

1.00 1.02 1.01

High Gain Antenna Strut Beam Element Forces

Z 1.00

M1

M2

P

1.00 1.00

.98 1.02

1.05 .90

Stringer Beam

1.00

1.00

.98

.96

.95

.94

1.08

.92

.89

.93

.88

.82

.87

.84

.90

.94

M1 1.06

M2 .99

P 1.02

Main Body Element Forces

.94 .99 .99 .97 1.02

1.00 .93 1.00 .99 .99

.99 1.00 1.01 .96 1.03

Lower Equipment Module Forces

Fx 1.00 1.00 1.00 1.00 1.01 1.04 .99 .99

.99 1.01 1.00 1.00 .99 1.00 1.00 1.00

.99 1.01

.99 1.03

.99 1.01

Skin Membrane

Fy

Fxy .99 1.00 .99 1.00 1.00 1.01 .92 1.07

Table (8.4) - Ratios of Responses of the Cassini Model Using Various

Representations to the 150 HZ Cutoff Eigenvector Representation Responses
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Chapter 9

Summary_ and Conclusions

Using the boundary flexibility method to initialize the block-Krylov recurrence

algorithm provides an efficient and simple method for generating static Ritz vectors.

Static Ritz vectors so generated accurately can represent the dynamics of a

substructure. Because this methodology does not require the solution of the

component eigenvalue problem, a component can be formed with a significant

decrease in computational cost. The component formed using static Ritz vectors can

include fewer vectors than the comparable eigensolution, for similar accuracy, and the

computational cost of the transient solution is then also reduced.

This dissertation presents new developments in several areas related to static

Ritz vector calculation using the boundary flexibility method. It has been shown that

the loss of orthogonality, discussed in the literature, is directly related to convergence

to an eigenvector in a power extraction method. Orthonormalization using the

euclidean norm rather than the mass matrix has been demonstrated. The replacement

of Gram-Schmidt with Cholesky/QR orthonormalization has also been demonstrated.

These two modifications to the orthonormalization algorithm were developed to

decrease the primary computational cost of the block-Krylov sequence.

The Krylov blocks produced by the boundary flexibility method are initially

to large for efficient handling and computation. As a result, a method of block

filtering has been developed which retains the physically significant information

159
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contained in the vector block, while eliminating the redundant information. Block

filtering reduces the block size to that commonly used in commercial Lanczos

eigenvalue extraction routines.

The use of inverse operators, or shifting, commonly used in Lanczos

eigenvalue extraction routines to search for missing eigenvectors, has been applied to

the boundary flexibility method. Shifting alters the Krylov sequence so that vectors

near a selected frequency are created. Targeted shifting utilizes the frequency

spectrum of the applied dynamic loading to select a targeted frequency. The spacial

distribution of the applied dynamic loading can be used in conjunction with targeted

shifting to further refine the static Ritz vector creation.

Determining when a sufficient number of static Ritz vectors have been

calculated to accurately represent a component has been difficult. Truncation of the

Krylov sequence based upon the modal density of the given finite element model has

been developed and presented. This heuristic method is based on the observation that

dynamically significant static Ritz vectors are calculated early in the Krylov sequence,

and that fewer static Ritz vectors than eigenvectors are necessary to accurately

represent a component.

Potential future work on the boundary flexibility method of static Ritz vector

creation could include the use of synthetic load vectors to supplement the spatial

distribution of the applied dynamic load. A synthetic load could be created which

would cause a particular element, or sets of elements, to deflect. Applying this load
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to the Krylov sequencewould createstatic Ritz vectorswhich should guarantee

accurateresponsepredictionsfor specific,critical datarecoveryitems. This technique

could be investigatedwith no additionaltheoreticaldevelopment.

The shift strategydeveloped,andthe valueof the fractionx¢,couldbe tested

with a larger number of example models. This might allow for a either a

simplification, or a greater sophisticationof the shift strategy. In particular, an

alteration of the shift strategy,to allow the use of the applied load and targeted

shifting, on modelswith a numberof eigenvectorsin thefrequencyrangeof interest

smaller than theblock size,shouldbe investigated.



References

1) Abdallah, A.A. and Huckelbridge, A.A., "Boundary Flexibility Method of

Component Mode Synthesis Using Static Ritz Vectors", Computers &

Structures, Vol. 35, No. 1, 1990.

2) Allen, J.J., "A Component Synthesis Method Using Lanczos Vectors", Sixth

International Modal Analysis Conference, Vol. 1, 1988.

3) Arnold, R., Citerley, R., Chagrin, M., and Galant, D., "Application of Ritz

Vectors for Dynamic Analysis of Large Structures", Computers and Structures,

Vol. 21, No. 3, pp. 461-467, 1985.

4) Bronson, R., "Matrix Operations", McGraw-Hill, New York, N.Y., 1989.

5) Brunty, J.A., "A Transient Response Analysis of the Space Shuttle Vehicle

During Liftoff", NASA TM-103505, 1990.

6) Carney, K.S., Abdallah, A.A., and Huckelbridge, A.A., "Implementation of the

Block-Krylov Boundary Flexibility Method of Component Synthesis", NASA

TM-106065, 1993.

7) Cook, R.D., "Concepts and Applications of Finite Element Analysis", Wiley,

New York, N.Y., 1981.

8) Craig, R.R., "Structural Dynamics, An Introduction to Computer Methods",

Wiley, New York, N.Y., 1981.

9) Craig, R.R. and Bampton, M.C.C., "Coupling of Substructures for Dynamic

Analysis", AIAA Journal, Vol. 6, 1968.

10) Craig, R.R. and Hale, A.L., "Block-Krylov Component Synthesis Method for

Structural Model Reduction", Journal of Guidance, Control and Dynamics,

Vol. 11, No. 6, 1988.

11) Craig, R.R., Su, T.J, and Kim, H.M., "Some Experiences with Krylov Vectors

and Lanczos Vectors", Fifth Aerospace Computational Control Conference,

1992.

162



12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

163

Escobedo-Torres, J., and Ricles, J.M, "Improved Dynamic Analysis Method

Using Load-Dependent Ritz Vectors", 34th AIAA Structures, Structural

Dynamics, and Materials Conference, 1993.

Grimes, R.G., Lewis, J.G., and Simon, H., "A Shifted Block LANCZOS

Algorithm for Solving Sparse Symmetric Generalized Eigenproblems", AMS-

TR-166, Boeing Computer Services, July 1991.

Kammer, D.C., Flanigan, C.C., and Dreyer, W., "A Superelement Approach

to Test-Analysis Model Development," Fourth International Modal Analysis

Conference, Los Angeles, CA., Feb, 1986.

Lanczos, C., "An Iteration Method for the Solution of the Eigenvalue Problem

of Linear Differential and Integral Operators", Journal Res. Nat. Bur.

Standards, Sect. B Vol. 45, pp. 225-280, 1950.

L6ger, P., "Application of Load-Dependent Vectors Bases for Dynamic

Substructure Analysis", AIAA Journal, Vol. 28, No. 1, pp. 177-179, 1990.

MacNeal, R.H., "A Hybrid Method of Component Mode Synthesis",

Computers and Structures, Vol. 1, pp. 581-601, 1971.

Noble, B.N. and Daniel, J.W., "Applied Linear Algebra", Prentice-Hall,

Englewood Cliffs, N.J., 1988.

Nour-Omid, B. and Clough R.W., "Dynamic Analysis of Structures Using

Lanczos Co-Ordinates", Earthquake Engineering and Structural Dynamics, Vol.

12, pp. 565-577, 1984.

Nour-Omid, B. and Clough R.W., "Block Lanczos Method For Dynamic

Analysis of Structures", Earthquake Engineering and Structural Dynamics, Vol.

13, pp. 271-275, 1985.

Paige, C.C., "Practical Use of the Symmetric Lanczos Process with Re-

Orthogonalization", BIT, Vol. 10, pp.183-195, 1970.

Parlett, B.N., "The Symmetric Eigenvalue Problem ", Prentice-Hall, Englewood

Cliffs, N.J., 1980.

Parlett, B.N., and Scott, D.S., "The Lanczos Algorithm With Selective

Orthogonalization", Mathematics of Computation, Vol. 33, pp. 217-238, 1979.



164

24) RubinS., "ImprovedComponent-ModeRepresentationfor StructuralDynamic
Analysis", AIAA Journal, Vol. 13, No. 8, 1975.

25) Scott, D.S., "The Advantages of Inverted Operators in Rayleigh-Ritz

Approximations", SlAM Journal ofSci. Stat. Computations, Vol. 3, No. 1, pp.

68-75, March 1982.

26) Simon, H.D., "The Lanczos Algorithm for Solving Symmetric Linear

Systems", Technical Report PAM-74, University of California, Berkeley, 1982.

27) Su, T.J. and Craig R.R., "Model Reduction and Control of Flexible Structures

Using Krylov Vectors", Journal of Guidance, Control, and Dynamics, Vol. 14,

No. 2, 1991.

28) Wilson, E.L. and Bayo, E.P., "Use of Special Ritz Vectors in Dynamic

Substructure Analysis", A S CE Journal of Structural Engineering, Vol. 112, No.

8, 1986.

29) Wilson, E.L., Yuan, M.W. and Dickens, J.M., "Dynamic Analysis by Direct

Superposition of Ritz Vectors", Earthquake Engineering Structural Dynamics,

Vol. 10, 1982.

30) Yiu, Y.C. and Landess, J.D., "A Reduced Order Method for Passive

Substructures", 31th AIAA Structures, Structural Dynamics, and Materials

Conference, 1990.

31) "MSC/NASTRAN Handbook for Numerical Methods", Komzsik, L., Editor,

The MacNeal-Schwendler Corporation, Los Angeles, CA, April 1990.

32) "MSC/NASTRAN User's Manual, Version 67", The MacNeal-Schwendler

Corporation, Los Angeles, CA, August 1991.



Appendix A1 - EPS Radiator Finite Element Model Effective Masses

Mode Frequency Effective Masses (%)

No. (Hz) T 1 T2 T3 R 1 R2 R3

1 0.19 0.0 0.0 46.8 93.7 35.8 0.0

2 0.70 0.1 0.0 0.0 0.0 11.2 0.1

3 0.91 43.4 0.0 0.0 0.0 1.0 85.0

4 1.20 0.0 35.7 0.1 0.0 0.1 2.2

5 1.30 0.0 0.3 12.3 3.6 9.4 0.0

6 2.59 0.4 0.0 0.0 0.0 1.6 0.2

7 3.32 19.2 0.0 0.0 0.0 0.6 6.1

8 3.65 0.0 0.1 3.7 0.7 2.8 0.0

9 5.15 0.0 9.9 0.0 0.0 0.0 0.6

10 5.78 0.2 0.0 0.0 0.0 0.6 0.0

11 6.73 0.0 0.5 1.7 0.3 1.3 0.0

12 6.88 4.3 0.0 0.0 0.0 0.2 0.4

13 8.92 0.0 0.5 0.4 0.0 0.3 0.0

14 9.72 0.9 0.0 0.0 0.0 0.0 0.1

15 9.96 0.0 1.0 1.2 0.2 0.9 0.1

16 10.33 0.8 0.0 0.0 0.0 0.5 0.1

17 10.72 0.0 0.2 5.3 0.5 4.0 0.0

18 12.08 1.1 0.0 0.0 0.0 0.1 0.1

19 13.15 0.0 0.0 0.0 0.0 0.0 0.0

20 14.51 0.8 0.0 0.0 0.0 0.0 0.1

21 15.05 0.0 0.0 0.0 0.0 0.2 0.0

22 16.34 0.7 0.0 0.0 0.0 0.0 0.0

23 16.34 0.0 0.0 0.0 0.0 0.0 0.0

24 16.91 0.0 0.0 0.0 0.0 0.1 0.0

25 17.83 0.7 0.0 0.0 0.0 0.0 0.0

26 18.71 0.7 0.0 0.0 0.0 0.0 0.0

27 19.15 0.0 1.2 0.1 0.0 0.1 0.1

28 20.25 0.0 0.3 0.0 0.0 0.0 0.0

29 21.03 0.1 0.0 0.0 0.0 1.2 0.0

30 22.80 0.0 0.0 0.0 0.0 0.0 0.0

31 22.94 0.0 0.1 0.0 0.0 0.0 0.0

32 23.13 0.0 0.0 0.0 0.0 0.0 0.0

33 24.03 0.0 0.0 0.0 0.0 0.0 0.0

34 24._ 0.0 0.0 0.0 0.0 0.0 0.0
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35 24.80 0.0 0.0 0.0 0.0 0.0 0.0
36 25.52 0.0 0.5 0.1 0.0 0.1 0.0
37 25._ 0.0 0.1 0.0 0.0 0.0 0.0
38 25.75 0.0 0.0 0.0 0.0 0.0 0.0
39 26.23 0.0 0.0 0.0 0.0 0.0 0.0
40 26.34 0.0 0.0 0.0 0.0 0.0 0.0
41 27.01 0.0 1.1 0.5 0.0 0.4 0.1
42 27.43 0.0 0.0 0.0 0.0 0.0 0.0
43 27.69 0.0 0.0 0.0 0.0 0.0 0.0

28.19 0.0 0.0 0.1 0.0 0.1 0.0
45 28.46 0.0 0.3 0.0 0.0 0.0 0.0
46 28.91 0.0 1.7 0.8 0.1 0.6 0.1
47 29.61 0.0 0.0 0.0 0.0 0.0 0.0
48 30.23 0.0 0.0 0.5 0.0 0.4 0.0
49 30.88 0.0 0.0 0.0 0.0 0.0 0.0
50 30.89 0.0 0.0 0.0 0.0 0.0 0.0
51 31.13 0.0 2.2 0.0 0.0 0.0 0.1
52 33.69 0.0 0.0 0.0 0.0 0.0 0.0
53 33.79 0.0 0.4 0.0 0.0 0.0 0.0
54 34.35 0.0 2.1 0.0 0.0 0.0 0.1
55 34.71 0.0 0.0 0.0 0.0 0.0 0.0
56 36.57 0.0 0.3 0.0 0.0 0.0 0.0
57 37.37 0.0 0.0 0.0 0.0 0.0 0.0
58 37.51 0.0 1.6 0.0 0.0 0.0 0.I
59 37.53 0.0 0.0 0.0 0.0 0.0 0.0
60 38.26 0.0 0.4 0.0 0.0 0.0 0.0
61 38.61 0.0 0.1 0.0 0.0 0.0 0.0
62 39.79 0.0 0.0 0.0 0.0 0.1 0.1
63 39.83 0.0 0.0 0.0 0.0 0.0 0.0

40.88 0.0 9.5 0.0 0.0 0.0 0.6
65 41.08 0.0 0.2 0.0 0.0 0.0 0.0
66 42.45 0.0 0.0 0.0 0.0 0.0 0.0
67 _.29 0.0 0.0 0.0 0.0 0.0 0.0
68 _.52 0.0 0.0 0.0 0.0 0.0 0.0
69 45.73 0.0 0.0 0.0 0.0 0.0 0.0
70 46.20 0.0 0.0 0.0 0.0 0.0 0.0
71 46.53 0.0 0.0 0.0 0.0 0.0 0.0
72 46.74 0.0 2.6 0.1 0.0 0.0 0.2
73 48.69 0.0 0.3 0.0 0.0 0.0 0.0
74 49.37 0.0 1.8 0.0 0.0 0.0 0.1
75 49.70 0.0 0.0 0.0 0.0 0.0 0.0
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76
77
78
79
8O
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

50.80
51.21
51.81
52.04
53.69
55.50
56.10
56.65
56.97
57.69
58.28
59.33
60.24
61.50
62.01
62.45
63.12
63.86
64.84
67.15
70.52
70.53
71.34
73.06
74.40
75.66
76.92
79.49
79.89
80.46
82.72
83.36
84.53
85.43
86.57
87.00
88.86
89.31
89.90
92.33
92.75

0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.2
0.6
0.0
0.5
1.7
0.0
0.0
4.7
0.1
0.0
0.1
0.5
0.0
0.6
0.8
0.9
0.0
0.2
0.0
0.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.5
0.0
0.0
0.0
0.1
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.4
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.2
0.0
0.1
0.1
0.0
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
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117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

94.21 0.0 0.0 0.0 0.0 0.0 0.0
96.19 0.0 0.0 0.0 0.0 0.0 0.0
96.53 0.1 0.0 0.0 0.0 0.0 0.0
98.07 1.0 0.1 0.0 0.0 0.1 0.1
98.77 0.0 0.0 0.0 0.0 0.0 0.0
99.72 0.1 0.0 0.0 0.0 0.0 0.0
100.06 0.0 0.0 0.0 0.0 0.0 0.0
100.19 0.0 0.0 0.0 0.0 0.0 0.0
100.46 0.1 0.0 0.0 0.0 0.0 0.0
101.95 0.0 0.0 0.0 0.0 0.0 0.0
102.02 0.0 0.0 0.0 0.0 0.0 0.0
102.69 0.0 0.0 0.0 0.0 0.0 0.0
103.97 0.0 0.0 0.0 0.0 0.0 0.0
1_.88 0.0 0.1 0.5 0.0 0.4 0.0
106.50 0.0 0.2 0.1 0.0 0.1 0.0
107.69 0.0 0.7 0.0 0.0 0.0 0.1
107.93 0.1 0.6 0.0 0.0 0.0 0.0
108.61 0.0 0.0 0.0 0.0 0.0 0.0
108.78 0.0 0.0 0.0 0.0 0.0 0.0
109.35 0.0 0.1 0.0 0.0 0.0 0.0
110.03 0.0 0.0 0.0 0.0 0.0 0.0
111.76 0.0 0.0 0.0 0.0 0.0 0.0
111.93 0.0 0.0 0.0 0.0 0.0 0.0
113.42 0.0 0.0 0.0 0.0 0.0 0.0
113.43 0.0 0.0 0.0 0.0 0.0 0.0
113.70 0.0 0.0 0.0 0.0 0.0 0.0
113.70 0.0 0.0 0.0 0.0 0.0 0.0
114.31 0.0 0.0 0.0 0.0 0.0 0.0
114.41 0.0 0.0 0.0 0.0 0.0 0.0
115._ 0.0 0.0 0.0 0.0 0.0 0.0

115.16 0.0 0.0 0.0 0.0 0.0 0.0

116._ 0.0 0.0 0.0 0.0 0.0 0.0

117.72 0.0 0.0 0.0 0.0 0.0 0.0

117.95 0.2 0.0 0.0 0.0 0.0 0.0

118.99 0.1 0.0 0.0 0.0 0.0 0.0

121.38 0.0 0.0 0.0 0.0 0.0 0.0

122.25 0.0 0.0 0.0 0.0 0.0 0.0

123.42 0.0 0.0 0.0 0.0 0.0 0.0

123.68 0.0 0.0 0.0 0.0 0.0 0.0

124.66 0.0 0.0 0.0 0.0 0.0 0.0

125.34 0.0 0.0 0.0 0.0 0.0 0.0



158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

169

125.37 0.0 0.0 0.0 0.0 0.0 0.0
126.61 0.0 0.0 0.0 0.0 0.0 0.0
127.27 0.0 0.0 0.0 0.0 0.0 0.0
128.22 1.0 0.0 0.0 0.0 0.0 0.0
128.68 0.6 0.0 0.0 0.0 0.0 0.0
129.60 0.2 0.0 0.0 0.0 0.0 0.0
131.13 0.0 0.0 0.0 0.0 0.0 0.0
131.41 0.2 0.0 0.0 0.0 0.0 0.0
133.15 0.0 0.0 0.0 0.0 0.0 0.0
133.57 0.0 0.0 0.0 0.0 0.0 0.0
133.86 0.2 0.0 0.0 0.0 0.0 0.0
134.39 0.0 0.0 0.0 0.0 0.0 0.0
135.99 0.0 0.0 0.0 0.0 0.0 0.0
136.67 0.0 0.0 0.3 0.0 0.2 0.0
137.31 0.0 0.0 0.0 0.0 0.0 0.0
137.41 0.0 0.0 0.0 0.0 0.0 0.0
138.89 0.0 0.0 0.0 0.0 0.0 0.0
139.59 0.0 0.0 0.0 0.0 0.0 0.0

T1
78.1

Total Effective Mass(%)
T2 T3 R1 R2 R3

90.3 75.6 99.4 75.7 98.8



Appendix A2 - Cassini Finite Element Model Effective Masses

Mode Frequency Effective Masses (%)

No. (Hz) T1 T2 T3 R1 R2 R3

1 7.36 49.2 8.6 0.0 13.2 78.7 0.0

2 7.70 7.7 50.9 0.0 78.8 12.5 0.0

3 12.19 0.0 0.0 0.0 0.0 0.0 0.2

4 14.89 0.0 0.0 0.0 0.0 0.0 0.0

5 14.91 0.0 0.0 0.0 0.0 0.0 0.0

6 15.50 0.0 0.0 0.0 0.0 0.0 13.9

7 15.75 0.0 0.2 0.0 0.0 0.0 60.5

8 15.88 0.0 0.0 0.0 0.0 0.0 0.0

9 15.90 0.0 0.0 0.0 0.0 0.0 0.0

10 17.85 0.3 0.0 5.2 0.0 0.1 0.0

11 18.28 0.0 0.7 0.0 0.1 0.0 1.0

12 19.01 3.0 0.2 0.4 0.0 0.7 2.2

13 19.08 4.3 0.0 0.5 0.0 0.9 0.8

14 19.21 0.1 0.9 0.0 0.2 0.0 0.0

15 19.54 1.7 0.1 5.2 0.0 0.6 0.2

16 19.81 0.5 0.0 0.5 0.0 0.1 0.4

17 19.96 0.0 0.2 0.0 0.1 0.0 0.0

18 20.04 0.0 1.7 0.0 0.6 0.0 0.5

19 20.34 0.4 2.0 4.1 0.3 0.1 0.9

20 20.47 1.4 1.8 3.5 0.2 0.3 1.2

21 20.63 1.2 0.3 0.0 0.0 0.2 0.1

22 21.39 5.4 0.0 1.1 0.0 1.3 0.0

23 23.44 0.0 0.0 0.0 0.0 0.0 0.7

24 23.73 1.5 0.0 0.8 0.0 0.3 0.0

25 25.55 0.0 9.0 0.4 2.5 0.0 3.4

26 25.94 1.0 0.0 0.1 0.0 0.1 0.0

27 26.54 0.0 0.6 0.1 0.2 0.0 2.5

28 27.14 1.0 0.0 0.0 0.0 0.2 0.0

29 27.23 0.0 0.0 0.1 0.0 0.0 0.1

30 27.45 0.0 0.0 0.0 0.0 0.0 0.0

31 27.52 0.0 0.0 0.2 0.0 0.0 0.0

32 28.33 1.7 0.1 14.2 0.1 0.5 0.1

33 29.60 0.3 0.6 2.8 0.1 0.1 0.0

34 29.70 0.5 1.1 2.3 0.2 0.1 0.0
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35 31.27 1.9 2.9 4.6 0.5 0.4 O.1
36 31.51 0.0 0.1 2.1 0.0 0.0 0.0
37 33.53 0.4 0.0 1.9 0.0 O.1 0.0
38 34.49 2.6 0.0 0.0 0.0 0.5 0.0
39 34.99 0.0 0.0 0.0 0.0 0.0 O.1
40 35.23 0.3 0.0 0.3 0.0 O.1 0.0
41 36.45 1.2 3.7 0.5 0.6 0.2 0.0
42 36.73 2.7 1.4 O.1 0.3 0.5 O.1
43 37.53 0.8 2.1 15.6 0.4 0.2 0.1
44 38.04 0.0 1.1 1.6 0.2 0.0 0.0
45 38.29 0.0 O.1 19.6 0.0 0.0 0.0
46 38.53 0.1 0.0 0.1 0.0 0.0 0.1
47 39.26 0.2 0.7 0.0 O.1 0.0 0.2
48 39.39 1.2 0.0 0.5 0.0 0.3 O.1
49 40.65 0.0 3.0 0.0 0.5 0.0 0.0
50 41.70 0.4 0.2 0.2 0.0 0.1 0.0
51 41.97 0.2 O.1 0.4 0.0 0.0 0.0
52 42.69 0.2 O.1 O.1 0.0 0.0 O.1
53 43.38 1.6 0.0 0.1 0.0 0.2 0.1
54 44.23 0.1 0.0 0.5 0.0 0.0 0.0
55 44.58 0.0 0.0 O.1 0.0 0.0 0.0
56 44.98 O.1 0.0 1.3 0.0 0.0 0.0
57 45.11 0.2 0.0 0.9 0.0 0.0 0.0
58 46.03 0.0 1.0 0.1 0.2 0.0 0.0
59 47.12 0.0 0.0 0.0 0.0 0.0 0.3
60 47.71 0.0 0.0 0.2 0.0 0.0 0.0
61 48.40 O.1 O.1 1.3 0.0 0.0 0.0
62 48.89 0.0 0.0 0.0 0.0 0.0 0.0
63 49.13 0.2 0.0 O.1 0.0 0.0 0.7
64 50.11 0.0 0.0 0.0 0.0 0.0 0.0
65 50.11 0.0 0.0 0.0 0.0 0.0 0.0
66 50.12 0.2 0.0 0.0 0.0 0.0 0.0
67 50.93 0.0 0.0 0.0 0.0 0.0 0.0
68 52.72 0.0 0.0 0.0 0.0 0.0 0.0
69 53.08 0.2 O.1 0.0 0.0 0.0 0.0
70 53.31 0.2 0.0 0.0 0.0 0.0 0.0
71 54.10 0.0 0.2 0.0 0.0 0.0 0.0
72 55.12 O.1 0.0 0.0 0.0 0.0 0.0
73 56.42 0.0 0.0 0.1 0.0 0.0 0.0
74 57.31 0.0 0.0 0.0 0.0 0.0 0.0
75 58.35 0.0 0.0 0.1 0.0 0.0 0.0
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76 58.75 0.0 O.1 O.1 0.0 0.0 0.0
77 59.10 0.0 0.0 0.0 0.0 0.0 0.0
78 59.12 0.0 0.0 0.0 0.0 0.0 0.0
79 59.12 0.0 0.0 0.0 0.0 0.0 0.0
80 59.13 0.0 0.0 0.0 0.0 0.0 0.0
81 59.30 0.0 0.0 0.0 0.0 0.0 0.0
82 59.72 0.0 0.0 0.0 0.0 0.0 0.0
83 59.93 0.0 0.0 0.0 0.0 0.0 0.0
84 60.32 0.0 0.0 O.1 0.0 0.0 0.0
85 61.40 0.0 0.0 0.0 0.0 0.0 0.0
86 62.01 0.0 0.0 0.3 0.0 0.0 0.0
87 62.77 0.0 0.0 0.0 0.0 0.0 0.0
88 63.21 0.0 0.0 0.0 0.0 0.0 0.0
89 64.52 0.0 0.0 0.3 0.0 0.0 0.0
90 65.18 0.0 0.0 0.0 0.0 0.0 0.0
91 67.86 0.0 0.0 0.0 0.0 0.0 0.0
92 67.88 0.0 0.0 0.0 0.0 0.0 0.0
93 67.88 0.0 0.0 0.0 0.0 0.0 0.0
94 67.88 0.0 0.0 0.0 0.0 0.0 0.0
95 67.91 0.0 0.0 0.0 0.0 0.0 0.0
96 67.94 0.0 0.0 0.0 0.0 0.0 0.0
97 68.75 0.0 0.0 0.0 0.0 0.0 0.0
98 69.50 0.0 0.0 O.1 0.0 0.0 0.0
99 69.86 0.0 0.0 0.0 0.0 0.0 O.1
100 71.31 0.0 0.0 0.0 0.0 0.0 0.0
101 72.05 0.0 0.0 0.1 0.0 0.0 0.0
102 73.13 0.0 0.0 0.8 0.0 0.0 0.0
103 75.57 0.0 0.0 0.0 0.0 0.0 0.0
104 75.57 0.0 0.0 0.0 0.0 0.0 0.0
105 75.59 0.0 0.0 0.0 0.0 0.0 0.0
106 75.59 0.0 0.0 0.0 0.0 0.0 0.0
107 75.64 0.0 0.0 0.0 0.0 0.0 0.0
108 75.68 0.0 0.0 0.0 0.0 0.0 0.0
109 75.84 0.0 0.0 0.0 0.0 0.0 0.0
110 76.07 0.0 0.0 0.0 0.0 0.0 0.2
111 76.43 0.0 0.0 0.0 0.0 0.0 0.0
112 76.81 0.0 0.0 0.0 0.0 0.0 0.0
113 78.81 0.0 0.0 0.0 0.0 0.0 0.5
114 79.64 0.0 0.0 0.0 0.0 0.0 0.1
115 80.36 0.0 0.0 0.0 0.0 0.0 0.3
116 82.57 O.1 0.0 0.0 0.0 0.0 0.3
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117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

83.03
83.48
84.86
85.93
86.70
87.09
87.80
88.35
88.41
88.81
90.55
90.56
90.70
91.26
91.73
92.47
92.88
93.82
94.24
94.37
94.99
95.03
96.00
96.25
97.55
99.16
100.37
101.77
101.93
103.05
104.03
104.08
104.62
106.66
106.66
106.69
107.17
107.17
107.85

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.2
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.0
0.I
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.1
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.3
0.0
0.1
0.0
0.0
0.6
0.0
0.0
0.I
0.3
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
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156
157

109.30 0.0 0.0 0.0 0.0 0.0 0.5
109.53 0.0 0.0 0.0 0.0 0.0 0.2

T1
97.8

Total EffectiveMass(%)
T2 T3 R1 R2

97.8 97.8 99.8 99.8
R3

93.8



STRUCTURE : beam

ID

ACCE i0

ACCE i0

ACCE I0

EL FOR 1

EL FOR 1

EL FOR 1

EL FOR 1

EL FOR 1

EL FOR 1

Appendix B

M I N /MAX SUMMARY

PARAM2: eigen PARAM3:250 HZ RESPONSE: ALL
VALUE OCCURRENCE VALUE OCCURRENCE

3 -2.25390E+01 .9300

4 -7.88126E-01 .9200

5 -2.25390E+01 .9300

4 -2.61165E+03 1.8250

5 -2.54222E+03 1.0250

6 -3.19838E+00 1.8200

7 -3.31442E+00 1.0400

8 -2.29287E-01 .9450

9 -4.65317E-I0 .9450

1.79300E+01

8.04331E-01

1.79300E+01

2.54222E+03

2.61165E+03

3.31442E+00

3.19838E+00

1.27743E÷00

2.67230E-08

0100

0000

0100

0250

8250

0400

8200

.0250

.0250

175



STRUCTURE: beam

ID

ACCE i0

ACCE i0

ACCE I0

EL FOR 1

EL FOR 1

EL FOR 1

EL FOR 1

EL FOR 1

EL FOR 1

176

M I N / MAX

PARAM2: eigen
VALUE

3 -2.24629E+01

4 -6.83512E-01

5 -2.24629E+01

4 -2.61165E+03

5 -2.54222E+03

6 -3.19838E+00

7 -3.31442E+00

8 -2.28109E-01

9 -2.13987E-II

SUMMARY

PARAM3: 100 HZ RESPONSE: ALL

OCCURRENCE VALUE OCCURRENCE

.9300

.9200

.9300

1.8250

1.0250

1.8200

1.0400

.9450

.1400

1.78509E+01 .0100

6.97566E-01 .0000

1.78509E+01 .0100

2.54222E+03 1.0250

2.61165E+03 1.8250

3.31442E+00 1.0400

3.19838E+00 1.8200

1.08525E÷00 .0250

1.09748E-13 1.0800



STRUCTURE:beam
ID

ACCE i0
ACCE 10
ACCE l0
EL FOR 1
EL FOR 1
EL FOR 1
EL FOR 1
EL FOR 1
EL FOR 1

177

M I N / MAX

PARAM2 : ritz

VALUE

3 -2.24504E+01

4 -8.72979E-01

5 -2.24504E+01

4 -2.61165E+03

5 -2.54221E+03

6 -3.19838E+00

7 -3.31401E+00

8 -2.17777E-01

9 0.00000E+00

SUMMARY

PARAM3 : fracl. 0

OCCURRENCE

.9300 1

.9200 8

.9300 1

1.8250 2

1.0250 2

1.8200 3

1.0400 3

.9450 1

.0000 0

RESPONSE: ALL

VALUE OCCURRENCE

78359E+01 .0100

90928E-01 .0000

78359E+01 .0100

54221E+03 1.0250

61165E+03 1.8250

31401E+00 1.0400

19838E+00 1.8200

12482E+00 .0250

00000E+00 .0000



STRUCTURE:

ACCE
ACCE
ACCE
EL FOR
EL FOR
EL FOR
ELFOR
EL FOR
EL FOR

beam
ID
i0
i0
i0
1
1
1
1
1
1

178

M IN /MAX SUMMARY

PARAM2 : ritz PARAM3 : frac. 5 RESPONSE : ALL

VALUE OCCURRENCE VALUE OCCURRENCE

3 -1.98163E+01 .9300

4 -6.70055E-01 .0200

5 -1.98163E+01 .9300

4 -2.61174E+03 1.8250

5 -2.53853E+03 1.0250

6 -3.20066E+00 1.8200

7 -3.27943E+00 1.0450

8 -2.27150E-01 .9450

9 0.00000E+00 .0000

1.52155E+01 .0100

6.68161E-01 .9400

1.52155E+01 .0100

2.53853E+03 1.0250

2.61174E+03 1.8250

3.27943E+00 1.0450

3.20066E+00 1.8200

1.01833E+00 .0250

0.00000E+00 .0000



STRUCTURE : beam

ID

ACCE l0

ACCE i0

ACCE I0

EL FOR 1

EL FOR 1

EL FOR 1

EL FOR 1

EL FOR 1

EL FOR 1

179

M I N / MAX

PARAM2 : ritz

VALUE

3 -1.98163E+01

4 -6.70055E-01

5 -1.98163E+01

4 -2.61174E+03

5 -2.53853E+03

6 -3.20066E+00

7 -3.27943E+00

8 -2.27150E-01

9 0.00000E+00

SUMMARY

PARAM3 : frac.25

OCCURRENCE

9300

0200

9300

1 8250

1 0250

1 8200

1 0450

9450

0000

RESPONSE: ALL

VALUE OCCURRENCE

1.52155E+01 .0100

6.68161E-01 .9400

1.52155E+01 .0100

2.53853E+03 1.0250

2.61174E+03 1.8250

3.27943E+00 1.0450

3.20066E+00 1.8200

1.01833E+00 .0250

0.00000E+00 .0000



STRUCTURE:radiator
ID

ACCE 440827
ACCE 440827
ACCE 440827
EL FOR 440155
EL FOR 440155
EL FOR 440155
EL FOR 440155
EL FOR 440155
EL FOR 440155

180

M I N / MAX

PARAM2 : eigen

VALUE

3

4

5

4

5

6

7

8

9

SUMMARY

PARAM3: 150 HZ

OCCURRENCE

-9 96496E-01 31.0078

-5 71353E+00 .1150

-I 67945E+00 17.0102

-2 91732E-01 21.6194

-I 54566E+00 16.2353

-5 46363E-02 18.1800

-4.14298E-01 21.6094

-9.38668E-01 16.2503

-2.75216E-01 21.6194

RESPONSE: ALL

VALUE OCCURRENCE

2 54486E-01 17.0102

71285E+00 17.1851

06374E+00 21.3244

41954E-01 .1250

89794E-01 21.6094

09203E-02 16.9851

28340E-01 16.2353

09971E-01 18.7948

15571E-01 17.0051



STRUCTURE:radiator
ID

ACCE 440827
ACCE 440827
ACCE 440827
EL FOR 440155
ELFOR 440155
ELFOR 440155
ELFOR 440155
ELFOR 440155
EL FOR 440155

181

M I N / MAX

PARAM2: eigen
VALUE

SUMMARY

PARAM3: 60 HZ

OCCURRENCE

-I.00129E+00 31.0078

-5.71337E+00 .1150

-1.69103E+00 17.0102

-2.96674E-01 21.6194

-1.57609E+00 16.2353

-5.56583E-02 18.1800

-4.24259E-01 21.6094

-9.60995E-01 16.2503

-2.79499E-01 21.6194

RESPONSE: ALL

VALUE OCCURRENCE

2 57273E-01 17.0102

71283E+00 17.1851

07328E+00 21.3244

55594E-01 .1250

06379E-01 21.6094

91698E-02 16.9902

46616E-01 16.2353

08715E-01 18.7948

28780E-01 17.0051



STRUCTURE:radiator
ID

ACCE 440827
ACCE 440827
ACCE 440827
ELFOR 440155
ELFOR 440155
ELFOR 440155
ELFOR 440155
EL FOR 440155
EL FOR 440155

182

M I N / MAX

PARAM2 : ritz

VALUE

3

4

5

4

5

6

7

8

9

SUMMARY

PARAM3:fracl.0

OCCURRENCE

-9.92473E-01 31.0078

-5.71352E+00 .1150

-1.65486E+00 17.0102

-2.93704E-01 21.6194

-1.54285E+00 16.2353

-5.56114E-02 18.1800

-4.16776E-01 21.6094

-9.40207E-01 16.2503

-2.76952E-01 21.6194

RESPONSE: ALL

VALUE OCCURRENCE

2.50247E-01 17 0102

1.71291E+00 17 1851

2.03754E+00 21 3244

9.49249E-01 1250

6.93919E-01 21 6094

7.54589E-02 16 9902

9.26655E-01 16.2353

6.07573E-01 18.7948

9.22073E-01 17.0051



STRUCTURE:radiator
ID

ACCE 440827
ACCE 440827
ACCE 440827
EL FOR 440155
EL FOR 440155
EL FOR 440155
ELFOR 440155
ELFOR 440155
ELFOR 440155

183

M I N / MAX

PARAM2 : ritz

VALUE

3 -9.68425E-01

4 -5.72016E+00

5 -1.64152E+00

4 -2.92021E-01

5 -1.57293E+00

6 -5.54656E-02

7 -4.30009E-01

8 -9.55818E-01

9 -2.76342E-01

SUMMARY

PARAM3: frac.5

OCCURRENCE

31.0078

.1150

17.0102

21.6144

16.2353

18.1800

21.6094

16.2553

21.6194

RESPONSE: ALL

VALUE OCCURRENCE

2.24475E-01 17.0501

1.71146E÷00 17.1851

2.09572E+00 21.3244

9.44502E-01 .1250

7.15953E-01 21.6094

7.52191E-02 16.9902

9.44717E-01 16.2353

6.10545E-01 18.7948

9.15235E-01 17.0051



STRUCTURE:radiator
ID

ACCE 440827

ACCE 440827

ACCE 440827

EL FOR 440155

EL FOR 440155

EL FOR 440155

EL FOR 440155

EL FOR 440155

EL FOR 440155

184

M I N / MAX

PARAM2 : ritz

VALUE

3 -9.65517E-01

4 -5.72386E+00

5 -i. 62194E+00

4 -2. 95189E-01

5 -I. 65746E+00

6 -5.35842E-02

7 -4. 61048E-01

8 -i. 04982E+00

9 -2. 78004E-01

SUMMARY

PARAM3:frac.25

OCCURRENCE

31.0078

.1150

17.0102

21.6144

16.2453

18.1800

21.6094

16.2553

21.6194

RESPONSE: ALL

VALUE OCCURRENCE

2.21647E-01

1.71038E+00

2.05417E+00

9.55356E-01

7.67631E-01

7.54796E-02

9.95492E-01

6.70256E-01

9.23280E-01

17 0551

17 1851

21 3244

1250

21 6094

16 9851

16 2453

17.9000

17.0051



STRUCTURE:cassini
ID

ACCE 10004
ACCE 10004
ACCE 10004
ACCE 701
ACCE 701
ACCE 701
EL FOR 11601
ELFOR 11601
ELFOR 11601
ELFOR 1262
ELFOR 1262
ELFOR 1262
ELFOR 16505
ELFOR 16505
ELFOR 16505

185

M I N / MAX

PARAM2 : eigen
VALUE

3 -5.88261E+02

4 -4.04763E+02

5 -1.75641E+03

3 -3.12625E+02

4 -2.75651E+02

5 -I.14259E+03

4 -1.04208E+02

5 -3.49150E+01

8 -6.76765E+02

4 -2.22637E+02

5 -4.89656E+01

8 -I.02894E+02

2 -9.22882E+01

3 -4.11428E+02

4 -9.47152E+01

SUMMARY

PARAM3: 150 HZ

OCCURRENCE

1.3670

1.9490

.5140

1.2130

1.9610

.7740

.5960

1.1870

.8570

1.2840

.7670

1.2850

1.3640

.8510

1.1040

RESPONSE: ALL

VALUE OCCURRENCE

4.88726E+02

5.37344E+02

3 23883E+02

3 79308E+02

5 07647E+02

-6 93264E+00

5 69385E+01

4 77298E+01

6 52884E+02

1 08921E+02

2 43728E+01

5 93157E+01

8 67772E+01

3 I1839E+02

9 85466E+01

.7680

.6300

.6850

.1050

.6280

.0000

.8620

.1300

.1320

.8560

.9350

.8550

.6080

.5970

.6490



186

M IN / MAX SUMMARY

STRUCTURE: cassini PARAM2: eigen PARAM3: 60 HZ RESPONSE: ALL

ID VALUE OCCURRENCE VALUE OCCURRENCE

ACCE 10004 3

ACCE 10004 4

ACCE 10004 5

ACCE 701 3

ACCE 701 4

ACCE 701 5

EL FOR I1601 4

EL FOR 11601 5

EL FOR 11601 8

EL FOR 1262 4

EL FOR 1262 5

EL FOR 1262 8

EL FOR 16505 2

EL FOR 16505 3

EL FOR 16505 4

-5 88162E+02

-4 04593E+02

-I 75667E+03

-3 12834E+02

-2 75536E+02

-I 14237E+03

-I 04183E+02

-3 40644E+01

-7.10632E+02

-2.36321E+02

-4.85338E+01

-I.04599E+02

-9.22948E+01

-4.08437E+02

-9.41314E+01

1.3670

1.9490

.5140

1.2130

1.9610

.7740

.5960

1.1870

.8570

1.2840

.7670

1.2850

1.3640

.8510

1.1040

4

5

3

3

5

-3

89098E+02

36760E+02

23813E+02

78818E+02

07715E+02

90032E+01

5.70208E+01

4.88520E+01

6.11217E+02

1.02161E+02

2.44500E+01

5.85180E+01

8.67314E+01

3.14572E+02

9.87876E+01

.7680

.6300

.6850

1.1050

.6280

.0000

.8620

1.1300

1.1320

.8560

1.9350

.8550

.6080

.5970

.6490



STRUCTURE :

ACCE

ACCE

ACCE

ACCE

ACCE

ACCE

EL FOR

EL FOR

EL FOR

EL FOR

EL FOR

EL FOR

EL FOR

EL FOR

EL FOR

cassini

ID

10004

10004

10004

701

701

701

11601

I1601

ll601

1262

1262

1262

16505

16505

16505

187

M'r_/MAX

PARAM2 : ritz

VALUE

3 -6 31701E+02

4 -3 91711E+02

5 -I 80007E+03

3 -3 14088E+02

4 -2 69071E+02

5 -i 14687E+03

4 -I 03659E÷02

5 -3 48669E+01

8 -6 65697E+02

4 -2 21476E+02

5 -4 85302E+01

8 -i 01938E+02

2 -9 21733E+01

3 -4 I0596E+02

4 -9 37584E+01

SUMMARY

PARAM3:fracl.0

OCCURRENCE

1.3650 5

1.9500 5

.5140 3

1.3620 3

1.9620 5

1.0300 -1

.5970 5

.6730 4

.857O 6

1.2840 1

.7670 2

1.2850 5

1.3640 8

.8510 3

1.1040 9

RESPONSE: ALL

VALUE OCCURRENCE

02735E+02 .7660

49198E+02 .6310

46303E+02 .3990

71505E+02 1.1050

09647E+02 .6280

60672E+01 .0000

43767E+01 .8610

51540E+01 1.1320

37747E+02 1.1330

09841E+02 .8560

49850E+01 1.9370

99338E+01 .8550

67974E+01 .6080

12612E+02 .5970
82706E+01 .6490



STRUCTURE:cassini
ID

ACCE 10004
ACCE 10004
ACCE 10004
ACCE 701
ACCE 701
ACCE 701
ELFOR 11601

EL FOR 11601

EL FOR 11601

EL FOR 1262

EL FOR 1262

EL FOR 1262

EL FOR 16505

EL FOR 16505

EL FOR 16505

188

M I N / MAX SUMMARY

PARAM2 : ritz PARAM3 : frac. 5

VALUE OCCURRENCE

3 -6.21011E+02 1.2210

4 -3.92906E+02 1.1080

5 -1.62924E+03 .5080

3 -3.62351E+02 1.3630

4 -2.68399E+02 1.0970

5 -I.16865E+03 1.0300

4 -I.12753E+02 .5950

5 -3.22312E+01 1.1860

8 -6.03145E+02 .8530

4 -2.20645E+02 1.2860

5 -4.57440E+01 .7680

8 -I.02720E+02 1.2870

2 -9.30055E+01 1.3620

3 -4.08634E+02 .8510

4 -9.48909E+01 1.1030

RESPONSE: ALL

VALUE OCCURRENCE

5.85796E+02

5.29591E+02

1.67419E+02

4.04263E+02 1

5.14539E+02

-3.07396E+01

5.31308E+01

4.20591E+01 1

5.55450E+02 1

1.08038E+02

2.43067E+01 1

5.99723E+01

9.00367E+01

3.10949E+02

9.97088E+01

7680

6350

3470

1050

6290

0000

8620

1310

1330

8550

9390

8550

6070

5980

6450



STRUCTURE: cassini

ID

ACCE 10004

ACCE 10004

ACCE 10004

ACCE 701

ACCE 701

ACCE 701

EL FOR 11601

EL FOR 11601

EL FOR 11601

EL FOR 1262

EL FOR 1262

EL FOR 1262

EL FOR 16505

EL FOR 16505

EL FOR 16505

189

M I N / MAX

PARAM2: ritz

VALUE

3 -4.52083E+02

4 -3.88050E+02

5 -1.62037E+03

3 -3.23387E+02

4 -2.68010E+02

5 -i 15915E+03

4 -9 03325E+01

5 -3 09406E+01

8 -6 I1457E+02

4 -2 15326E+02

5 -4 86087E+01

8 -9 91673E+01

2 -9 16432E+01

3 -4 12496E+02

4 -8 68751E+01

SUMMARY

PARAM3: frac.25 RESPONSE: ALL

OCCURRENCE VALUE OCCURRENCE

1.3610

1.9500

1.2890

1.3680

.5160

7770

5930

6650

8520

1 2890

7680

1 2890

8510

8510

1 1050

3.76871E+02 .9310

5.85286E+02 .6280

2.13292E+02 .6900

3.62839E+02 1.1070

4.66561E+02 .6310

-4.01343E+01 .0000

5.33065E+01 .8610

4.00999E+01 1.1330

5.70471E+02 1.1370

I.II135E+02 .8530

2.40371E+01 1.9370

6.12986E+01 .8530

8.55358E+01 .6020

3.10529E+02 .5990

1.05739E+02 .6460
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